Decentralized P2P Federated Learning for Privacy-Preserving and Resilient Mobile Robotic Systems

计算机科学 异步通信 分布式计算 弹性(材料科学) 人工智能 计算机安全 计算机网络 物理 热力学
作者
Xiaokang Zhou,Wei Liang,Kevin I‐Kai Wang,Zheng Yan,Laurence T. Yang,Wei Wei,Jianhua Ma,Qun Jin
出处
期刊:IEEE Wireless Communications [Institute of Electrical and Electronics Engineers]
卷期号:30 (2): 82-89 被引量:69
标识
DOI:10.1109/mwc.004.2200381
摘要

Swarms of mobile robots are being widely applied for complex tasks in various practical scenarios toward modern smart industry. Federated learning (FL) has been developed as a promising privacy-preserving paradigm to tackle distributed machine learning tasks for mobile robotic systems in 5G and beyond networks. However, unstable wireless network conditions of the complex and harsh working environment may lead to poor communication quality and bring big challenges to traditional centralized global training in FL models. In this article, a Peer-to-Peer (P2P) based Privacy-Perceiving Asynchronous Federated Learning (PPAFL) framework is introduced to realize the decentralized model training for secure and resilient modern mobile robotic systems in 5G and beyond networks. Specifically, a reputation-aware coordination mechanism is designed and addressed to coordinate a group of smart devices dynamically into a virtual cluster, in which the asynchronous model aggregation is conducted in a decentralized P2P manner. A secret sharing based communication mechanism is developed to ensure an encrypted P2P FL process, while a Secure Stochastic Gradient Descent (SSGD) scheme is integrated with an Autoencoder and a Gaussian mechanism is developed to ensure an anonymized local model update, communicating within a few neighboring clients. The case study based experiment and evaluation in three different application scenarios demonstrate that the PPAFL can effectively improve the security and resilience issues compared with the traditional centralized approaches for smart mobile robotic applications in 5G and beyond networks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
乐乐应助鳗鱼灵寒采纳,获得10
刚刚
资山雁完成签到 ,获得积分10
1秒前
田様应助YixiaoWang采纳,获得10
1秒前
1秒前
ZJJ完成签到,获得积分20
1秒前
2秒前
大薯条完成签到 ,获得积分10
2秒前
one发布了新的文献求助10
2秒前
JoshuaChen发布了新的文献求助10
3秒前
锥子完成签到,获得积分10
3秒前
追风少侠李二狗完成签到,获得积分10
3秒前
4秒前
ZJJ发布了新的文献求助10
4秒前
CAOHOU应助nature采纳,获得20
4秒前
踹脸大妈发布了新的文献求助30
4秒前
Jenaloe发布了新的文献求助10
5秒前
巴斯光年发布了新的文献求助10
5秒前
完美世界应助科研通管家采纳,获得10
6秒前
water应助科研通管家采纳,获得10
6秒前
Lucas应助科研通管家采纳,获得10
6秒前
iNk应助科研通管家采纳,获得20
6秒前
SciGPT应助科研通管家采纳,获得10
6秒前
彭于晏应助科研通管家采纳,获得10
6秒前
NicotineZen完成签到,获得积分10
6秒前
kg发布了新的文献求助10
6秒前
dongjy应助科研通管家采纳,获得60
6秒前
Ava应助科研通管家采纳,获得10
6秒前
深情安青应助科研通管家采纳,获得10
6秒前
7秒前
7秒前
7秒前
桐桐应助科研通管家采纳,获得10
7秒前
英姑应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
7秒前
现实的青亦完成签到,获得积分10
7秒前
深情安青应助小呆采纳,获得10
7秒前
8秒前
友好冥王星完成签到 ,获得积分10
8秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986722
求助须知:如何正确求助?哪些是违规求助? 3529207
关于积分的说明 11243810
捐赠科研通 3267638
什么是DOI,文献DOI怎么找? 1803822
邀请新用户注册赠送积分活动 881207
科研通“疑难数据库(出版商)”最低求助积分说明 808582