Decentralized P2P Federated Learning for Privacy-Preserving and Resilient Mobile Robotic Systems

计算机科学 异步通信 分布式计算 弹性(材料科学) 人工智能 计算机安全 计算机网络 热力学 物理
作者
Xiaokang Zhou,Wei Liang,Kevin I‐Kai Wang,Zheng Yan,Laurence T. Yang,Wei Wei,Jianhua Ma,Qun Jin
出处
期刊:IEEE Wireless Communications [Institute of Electrical and Electronics Engineers]
卷期号:30 (2): 82-89 被引量:107
标识
DOI:10.1109/mwc.004.2200381
摘要

Swarms of mobile robots are being widely applied for complex tasks in various practical scenarios toward modern smart industry. Federated learning (FL) has been developed as a promising privacy-preserving paradigm to tackle distributed machine learning tasks for mobile robotic systems in 5G and beyond networks. However, unstable wireless network conditions of the complex and harsh working environment may lead to poor communication quality and bring big challenges to traditional centralized global training in FL models. In this article, a Peer-to-Peer (P2P) based Privacy-Perceiving Asynchronous Federated Learning (PPAFL) framework is introduced to realize the decentralized model training for secure and resilient modern mobile robotic systems in 5G and beyond networks. Specifically, a reputation-aware coordination mechanism is designed and addressed to coordinate a group of smart devices dynamically into a virtual cluster, in which the asynchronous model aggregation is conducted in a decentralized P2P manner. A secret sharing based communication mechanism is developed to ensure an encrypted P2P FL process, while a Secure Stochastic Gradient Descent (SSGD) scheme is integrated with an Autoencoder and a Gaussian mechanism is developed to ensure an anonymized local model update, communicating within a few neighboring clients. The case study based experiment and evaluation in three different application scenarios demonstrate that the PPAFL can effectively improve the security and resilience issues compared with the traditional centralized approaches for smart mobile robotic applications in 5G and beyond networks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
蜂蜜完成签到,获得积分10
刚刚
fuguier发布了新的文献求助10
刚刚
熊大完成签到,获得积分10
刚刚
宋叻叻完成签到,获得积分10
刚刚
鲤鱼小熊猫完成签到,获得积分10
1秒前
1秒前
快乐白晴关注了科研通微信公众号
1秒前
2秒前
xxx_oo完成签到,获得积分10
2秒前
2秒前
聪明的依白完成签到 ,获得积分10
2秒前
zzwwjj完成签到,获得积分10
2秒前
3秒前
DezhaoWang完成签到,获得积分10
3秒前
jane完成签到 ,获得积分10
4秒前
YangSY发布了新的文献求助10
4秒前
想和你陈成阿狗完成签到,获得积分10
4秒前
4秒前
在水一方应助飞翔的鸣采纳,获得10
5秒前
feilei完成签到,获得积分10
5秒前
5秒前
DD完成签到,获得积分10
5秒前
顾瞻完成签到,获得积分10
6秒前
louis发布了新的文献求助10
6秒前
guozizi完成签到,获得积分10
6秒前
大蛋完成签到,获得积分20
7秒前
量子星尘发布了新的文献求助10
7秒前
刚果王子完成签到,获得积分10
8秒前
galioo3000发布了新的文献求助10
8秒前
Xuz完成签到 ,获得积分10
8秒前
8秒前
科研通AI2S应助俊杰采纳,获得10
8秒前
浮游应助俊杰采纳,获得10
8秒前
善学以致用应助俊杰采纳,获得10
8秒前
ECT完成签到,获得积分10
9秒前
TAC完成签到,获得积分20
9秒前
smile完成签到,获得积分10
9秒前
yxt完成签到,获得积分10
9秒前
大鹅莓烦恼完成签到,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 901
Item Response Theory 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5427125
求助须知:如何正确求助?哪些是违规求助? 4540611
关于积分的说明 14173188
捐赠科研通 4458636
什么是DOI,文献DOI怎么找? 2445081
邀请新用户注册赠送积分活动 1436133
关于科研通互助平台的介绍 1413667