亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Decentralized P2P Federated Learning for Privacy-Preserving and Resilient Mobile Robotic Systems

计算机科学 异步通信 分布式计算 弹性(材料科学) 人工智能 计算机安全 计算机网络 物理 热力学
作者
Xiaokang Zhou,Wei Liang,Kevin I‐Kai Wang,Zheng Yan,Laurence T. Yang,Wei Wei,Jianhua Ma,Qun Jin
出处
期刊:IEEE Wireless Communications [Institute of Electrical and Electronics Engineers]
卷期号:30 (2): 82-89 被引量:69
标识
DOI:10.1109/mwc.004.2200381
摘要

Swarms of mobile robots are being widely applied for complex tasks in various practical scenarios toward modern smart industry. Federated learning (FL) has been developed as a promising privacy-preserving paradigm to tackle distributed machine learning tasks for mobile robotic systems in 5G and beyond networks. However, unstable wireless network conditions of the complex and harsh working environment may lead to poor communication quality and bring big challenges to traditional centralized global training in FL models. In this article, a Peer-to-Peer (P2P) based Privacy-Perceiving Asynchronous Federated Learning (PPAFL) framework is introduced to realize the decentralized model training for secure and resilient modern mobile robotic systems in 5G and beyond networks. Specifically, a reputation-aware coordination mechanism is designed and addressed to coordinate a group of smart devices dynamically into a virtual cluster, in which the asynchronous model aggregation is conducted in a decentralized P2P manner. A secret sharing based communication mechanism is developed to ensure an encrypted P2P FL process, while a Secure Stochastic Gradient Descent (SSGD) scheme is integrated with an Autoencoder and a Gaussian mechanism is developed to ensure an anonymized local model update, communicating within a few neighboring clients. The case study based experiment and evaluation in three different application scenarios demonstrate that the PPAFL can effectively improve the security and resilience issues compared with the traditional centralized approaches for smart mobile robotic applications in 5G and beyond networks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助cao采纳,获得10
3秒前
9秒前
18秒前
liu发布了新的文献求助10
23秒前
jyy应助科研通管家采纳,获得10
24秒前
子爵木完成签到 ,获得积分10
28秒前
科研小刘发布了新的文献求助10
47秒前
53秒前
chi完成签到 ,获得积分10
57秒前
大个应助科研小刘采纳,获得10
1分钟前
迷你的靖雁完成签到,获得积分10
1分钟前
乐乐完成签到,获得积分10
1分钟前
1分钟前
淡然平蓝发布了新的文献求助10
1分钟前
1分钟前
1分钟前
天才小熊猫完成签到,获得积分10
2分钟前
jiangchuansm发布了新的文献求助20
2分钟前
2分钟前
科研小刘发布了新的文献求助10
2分钟前
linuo完成签到,获得积分10
2分钟前
orixero应助Aira采纳,获得10
2分钟前
2分钟前
xiekunwhy完成签到,获得积分10
2分钟前
夜阑听雨完成签到,获得积分0
3分钟前
容若发布了新的文献求助10
3分钟前
远方发布了新的文献求助10
3分钟前
4分钟前
科研小刘发布了新的文献求助10
4分钟前
lingduyu发布了新的文献求助10
4分钟前
4分钟前
4分钟前
激动的似狮完成签到,获得积分10
4分钟前
4分钟前
4分钟前
Ying完成签到,获得积分10
4分钟前
lingduyu完成签到,获得积分10
4分钟前
健忘沛春完成签到 ,获得积分10
5分钟前
Singularity应助Milesma采纳,获得10
6分钟前
6分钟前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
宽禁带半导体紫外光电探测器 388
Case Research: The Case Writing Process 300
Global Geological Record of Lake Basins 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3142675
求助须知:如何正确求助?哪些是违规求助? 2793563
关于积分的说明 7806945
捐赠科研通 2449831
什么是DOI,文献DOI怎么找? 1303518
科研通“疑难数据库(出版商)”最低求助积分说明 626959
版权声明 601314