CosTaL: an accurate and scalable graph-based clustering algorithm for high-dimensional single-cell data analysis

聚类分析 计算机科学 余弦相似度 可扩展性 图形 聚类系数 模式识别(心理学) 算法 数据挖掘 人工智能 理论计算机科学 数据库
作者
Yijia Li,Jonathan V. Nguyen,David C. Anastasiu,Edgar A. Arriaga
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:24 (3) 被引量:3
标识
DOI:10.1093/bib/bbad157
摘要

Abstract With the aim of analyzing large-sized multidimensional single-cell datasets, we are describing a method for Cosine-based Tanimoto similarity-refined graph for community detection using Leiden’s algorithm (CosTaL). As a graph-based clustering method, CosTaL transforms the cells with high-dimensional features into a weighted k-nearest-neighbor (kNN) graph. The cells are represented by the vertices of the graph, while an edge between two vertices in the graph represents the close relatedness between the two cells. Specifically, CosTaL builds an exact kNN graph using cosine similarity and uses the Tanimoto coefficient as the refining strategy to re-weight the edges in order to improve the effectiveness of clustering. We demonstrate that CosTaL generally achieves equivalent or higher effectiveness scores on seven benchmark cytometry datasets and six single-cell RNA-sequencing datasets using six different evaluation metrics, compared with other state-of-the-art graph-based clustering methods, including PhenoGraph, Scanpy and PARC. As indicated by the combined evaluation metrics, Costal has high efficiency with small datasets and acceptable scalability for large datasets, which is beneficial for large-scale analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Halo完成签到,获得积分10
1秒前
lhnee应助舒适新梅采纳,获得10
1秒前
cRAMing完成签到,获得积分10
2秒前
3秒前
科研吗喽完成签到,获得积分10
3秒前
玉玉应助昏睡的汉堡采纳,获得20
3秒前
乐观的大叔完成签到 ,获得积分10
5秒前
SYLH应助JUGG采纳,获得10
5秒前
yyds完成签到,获得积分10
5秒前
5秒前
慕青应助ww采纳,获得10
5秒前
6秒前
6秒前
6秒前
虚幻靖易完成签到,获得积分10
7秒前
老实怀蝶完成签到,获得积分10
8秒前
上官若男应助zgd采纳,获得20
8秒前
含蓄寄文完成签到,获得积分10
8秒前
Tempo发布了新的文献求助10
9秒前
believe发布了新的文献求助10
9秒前
柠A发布了新的文献求助10
9秒前
9秒前
10秒前
所所应助Yu2507采纳,获得10
10秒前
byX发布了新的文献求助10
10秒前
乐观的莫茗完成签到,获得积分10
10秒前
SussClay发布了新的文献求助10
11秒前
Keimo完成签到,获得积分10
12秒前
13秒前
13秒前
14秒前
昂叔的头发丝儿完成签到,获得积分10
14秒前
15秒前
Gia关注了科研通微信公众号
15秒前
斯文败类应助qing采纳,获得10
15秒前
YY完成签到 ,获得积分10
16秒前
小虾米完成签到,获得积分10
16秒前
erhao完成签到,获得积分10
16秒前
mengzhao完成签到,获得积分10
17秒前
朱文韬发布了新的文献求助10
18秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961269
求助须知:如何正确求助?哪些是违规求助? 3507536
关于积分的说明 11136688
捐赠科研通 3239991
什么是DOI,文献DOI怎么找? 1790625
邀请新用户注册赠送积分活动 872449
科研通“疑难数据库(出版商)”最低求助积分说明 803199