Synergistic tuning mixed matrix membranes by Ag+-doping in UiO-66-NH2/polymers of intrinsic microporosity for remarkable CO2/N2 separation

巴勒 化学工程 渗透 气体分离 材料科学 聚合物 选择性 吸附 兴奋剂 多孔性 金属有机骨架 吸附 化学 有机化学 催化作用 复合材料 生物化学 工程类 光电子学
作者
Zhihong Lin,Ziyi Yuan,Kaifang Wang,Xuezhong He
出处
期刊:Journal of Membrane Science [Elsevier]
卷期号:681: 121775-121775 被引量:30
标识
DOI:10.1016/j.memsci.2023.121775
摘要

Novel mixed matrix membranes (MMMs) with superior CO2/N2 separation properties are of great importance for post-combustion CO2 capture from flue gas. Metal-organic frameworks (MOFs) as one of the most attractive porous fillers for MMMs fabrication, are considered to provide a solid molecular sieving mechanism for enhancing CO2/N2 selectivity. However, it causes the reduction in gas permeability and limits its further industrialization. Herein, we proposed a new strategy for filler functionalization by doping silver ions (Ag+) into UiO-66-NH2 nanoparticles through the double-solvent method and used for the preparation of advanced MMMs. The double-solvent method is benefits for the enrichment of Ag+ in the hydrophilic pores of UiO-66-NH2. As a result, the prepared novel MMMs called Ag+@UiO@PIM-1 with the polymers of intrinsic microporosity (PIMs) as polymer matrix, show outstanding CO2 permeability. According to the mixed gases (CO2/N2 = 10:90) permeation experiments under 25 °C and 2 bar, the membrane with 30%Ag+@10%UiO loading achieves more than 65% increase in CO2/N2 selectivity (∼30) and 120% in CO2 permeability (>15,000 Barrer) compared to the pristine PIM-1 membrane. By optimizing the Ag+ doping amount and Ag+@UiO loading content, the separation performance exceeds the 2019 CO2/N2 upper bound. To figure out the separation mechanism, the pore texture properties and CO2 affinity of the functional filler (Ag+@UiO) together with the membrane structure were characterized by XPS, PXRD, SEM, gas sorption, etc. The synergistic mechanisms by combing CO2 facilitated transport and molecular sieving from pore regulation were identified to enable advanced CO2/N2 membrane separation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无所吊谓发布了新的文献求助10
刚刚
小包发布了新的文献求助10
刚刚
杨然完成签到,获得积分10
刚刚
1秒前
1秒前
家迎松发布了新的文献求助10
1秒前
2秒前
共享精神应助雨眠采纳,获得10
2秒前
研友_Y59785应助Xman采纳,获得10
3秒前
3秒前
ODD完成签到,获得积分10
4秒前
4秒前
4秒前
姜兰完成签到,获得积分10
4秒前
长情砖头发布了新的文献求助10
4秒前
orixero应助漂亮幻莲采纳,获得10
4秒前
酷酷的涵蕾完成签到 ,获得积分10
5秒前
酷波er应助Zerorrrr采纳,获得10
5秒前
7秒前
Tan发布了新的文献求助10
8秒前
9秒前
yanxun完成签到,获得积分10
9秒前
jj发布了新的文献求助10
9秒前
CodeCraft应助huang采纳,获得10
9秒前
深情安青应助无情孤菱采纳,获得10
10秒前
10秒前
无情夏寒完成签到 ,获得积分10
10秒前
刘雨森完成签到,获得积分10
10秒前
12秒前
12秒前
13秒前
小为发布了新的文献求助10
13秒前
13秒前
苏满天完成签到 ,获得积分10
13秒前
慕青应助SCT采纳,获得10
13秒前
大模型应助TJway采纳,获得10
14秒前
14秒前
15秒前
15秒前
王润发布了新的文献求助10
15秒前
高分求助中
Genetics: From Genes to Genomes 3000
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3475201
求助须知:如何正确求助?哪些是违规求助? 3067198
关于积分的说明 9103105
捐赠科研通 2758595
什么是DOI,文献DOI怎么找? 1513687
邀请新用户注册赠送积分活动 699775
科研通“疑难数据库(出版商)”最低求助积分说明 699119