光热治疗
癌症研究
免疫疗法
医学
肿瘤微环境
转移
免疫系统
肝癌
癌症
癌症免疫疗法
癌细胞
药物输送
免疫学
内科学
材料科学
纳米技术
肝细胞癌
作者
Yi-Jie Qiu,Zhihua Wu,Yanling Chen,Jinghan Liao,Qi Zhang,Quan Wang,Yi Duan,Ke Gong,Sheng Chen,Liting Wang,Peili Fan,Yourong Duan,Wen‐Ping Wang,Yi Dong
标识
DOI:10.1002/advs.202300878
摘要
Abstract Advanced liver cancer is the most fatal malignant cancer, and the clinical outcomes of treatment are not very satisfactory due to the complexity and heterogeneity of the tumor. Combination therapy can efficiently enhance tumor treatment by stimulating multiple pathways and regulating the tumor immune microenvironment. Nanodrug delivery systems have become attractive candidates for combined strategies for liver cancer treatment. This study reports a nano ultrasound contrast agent (arsenic trioxide (ATO)/PFH NPs@Au‐cRGD) to integrate diagnosis and treatment for efficient ultrasound imaging and liver cancer therapy. This nanodrug delivery system promotes tumor‐associated antigens release through ATO‐induced ferroptosis and photothermal‐induced immunogenic cell death, enhancing the synergistic effects of ATO and photothermal therapy in human Huh7 and mouse Hepa1–6 cells. This drug delivery system successfully activates the antitumor immune response and promotes macrophage M1 polarization in tumor microenvironment with low side effects in subcutaneous and orthotopic liver cancer. Furthermore, tumor metastasis is inhibited and long‐term immunological memory is also established in orthotopic liver cancer when the nanodrug delivery system is combined with anti‐programmed death‐ligand 1 (PD‐L1) immunotherapy. This safe nanodrug delivery system can enhance antitumor therapy, inhibit lung metastasis, and achieve visual assessment of therapeutic efficacy, providing substantial potential in clinic applications for liver cancer.
科研通智能强力驱动
Strongly Powered by AbleSci AI