Designing copper–nickel hybrid nanoparticles based resistive sensor for ammonia gas sensing

材料科学 双金属片 纳米颗粒 电阻式触摸屏 结晶度 化学工程 静电纺丝 傅里叶变换红外光谱 分析化学(期刊) 电极 纳米技术 金属 冶金 复合材料 化学 聚合物 有机化学 物理化学 工程类 电气工程 色谱法
作者
Jebran Ahmad,Yaseen Muhammad,Tanveer ul Haq Zia,Muhammad Ali,Latif Ur Rahman,Ata Ur Rahman
出处
期刊:Materials Chemistry and Physics [Elsevier]
卷期号:305: 127868-127868 被引量:3
标识
DOI:10.1016/j.matchemphys.2023.127868
摘要

Designing advanced and cost-effective materials for ammonia gas sensing is concomitantly a challenging and crucial task. Herein, copper nickel (Cu–Ni) bimetallic hybrid nanoparticles were synthesized by the co-precipitation method for the application of ammonia gas detection. The synthesized nanoparticles (NPs) were characterized by employing UV–Visible spectroscopy which confirmed the band gap of 2.35 eV. FTIR analysis confirmed the stretching oscillation for hybrid Cu–Ni at 455 cm−1. XRD effectively evaluated the overall crystallinity and particle size while SEM confirmed the spherical shaped particles of the Cu–Ni BNPs. For ammonia gas sensing, the synthesized NPs were deposited onto an interdigitated electrode through electrospinning, then, connected through an LCR meter for analysis of different electrical properties. There was a direct relationship between current and voltage depicting the metallic behavior of the Cu–Ni BNPs. The Cu–Ni BNPs based sensor showed excellent performance on low frequencies of 1 kHz and there was an increase in resistance which confirmed that the sensor was a resistive type. The Cu–Ni showed a maximum response of 27s with a 24s recovery. The as-prepared sensing device can be applied for potential use in ammonia detection quantitatively and qualitatively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
辽东浅墨发布了新的文献求助30
1秒前
Owen应助飞星采纳,获得10
1秒前
还不如瞎写完成签到,获得积分10
1秒前
2秒前
张惠发布了新的文献求助10
3秒前
mao发布了新的文献求助30
3秒前
wenjian发布了新的文献求助10
3秒前
毛豆应助chHe采纳,获得10
4秒前
慕青应助plants采纳,获得10
5秒前
J卡卡K完成签到 ,获得积分10
7秒前
lin关注了科研通微信公众号
7秒前
巴图鲁完成签到,获得积分10
7秒前
鬼才之眼完成签到,获得积分10
8秒前
9秒前
欣欣发布了新的文献求助10
10秒前
调研昵称发布了新的文献求助20
10秒前
11秒前
北夏完成签到 ,获得积分10
11秒前
小海完成签到,获得积分10
12秒前
Luna完成签到 ,获得积分10
13秒前
13秒前
希望天下0贩的0应助yqb采纳,获得10
14秒前
认真灯泡发布了新的文献求助10
14秒前
iVANPENNY应助奶昔采纳,获得10
15秒前
科研通AI2S应助奋斗的绮山采纳,获得10
16秒前
iNk应助wenjian采纳,获得10
16秒前
17秒前
景Q同学发布了新的文献求助10
18秒前
南笙完成签到,获得积分10
19秒前
完美世界应助科研通管家采纳,获得10
20秒前
wen应助科研通管家采纳,获得10
20秒前
mhl11应助科研通管家采纳,获得10
20秒前
FashionBoy应助科研通管家采纳,获得10
20秒前
mhl11应助科研通管家采纳,获得10
20秒前
21秒前
毛豆应助科研通管家采纳,获得10
21秒前
Owen应助科研通管家采纳,获得10
21秒前
mhl11应助科研通管家采纳,获得10
21秒前
wen应助科研通管家采纳,获得10
21秒前
爆米花应助科研通管家采纳,获得10
21秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1200
How Maoism Was Made: Reconstructing China, 1949-1965 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
Medical technology industry in China 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3312412
求助须知:如何正确求助?哪些是违规求助? 2945030
关于积分的说明 8522726
捐赠科研通 2620818
什么是DOI,文献DOI怎么找? 1433096
科研通“疑难数据库(出版商)”最低求助积分说明 664837
邀请新用户注册赠送积分活动 650217