DeepTraSynergy: drug combinations using multimodal deep learning with transformers

计算机科学 药品 药物与药物的相互作用 人工智能 机器学习 交互网络 药物重新定位 代表(政治) 药物相互作用 变压器 药理学 生物 物理 量子力学 生物化学 电压 政治 政治学 法学 基因
作者
Fatemeh Rafiei,Hojjat Zeraati,Karim Abbasi,Jahan B. Ghasemi,Mahboubeh Parsaeian,Ali Masoudi‐Nejad
出处
期刊:Bioinformatics [Oxford University Press]
卷期号:39 (8) 被引量:40
标识
DOI:10.1093/bioinformatics/btad438
摘要

Screening bioactive compounds in cancer cell lines receive more attention. Multidisciplinary drugs or drug combinations have a more effective role in treatments and selectively inhibit the growth of cancer cells.Hence, we propose a new deep learning-based approach for drug combination synergy prediction called DeepTraSynergy. Our proposed approach utilizes multimodal input including drug-target interaction, protein-protein interaction, and cell-target interaction to predict drug combination synergy. To learn the feature representation of drugs, we have utilized transformers. It is worth noting that our approach is a multitask approach that predicts three outputs including the drug-target interaction, its toxic effect, and drug combination synergy. In our approach, drug combination synergy is the main task and the two other ones are the auxiliary tasks that help the approach to learn a better model. In the proposed approach three loss functions are defined: synergy loss, toxic loss, and drug-protein interaction loss. The last two loss functions are designed as auxiliary losses to help learn a better solution. DeepTraSynergy outperforms the classic and state-of-the-art models in predicting synergistic drug combinations on the two latest drug combination datasets. The DeepTraSynergy algorithm achieves accuracy values of 0.7715 and 0.8052 (an improvement over other approaches) on the DrugCombDB and Oncology-Screen datasets, respectively. Also, we evaluate the contribution of each component of DeepTraSynergy to show its effectiveness in the proposed method. The introduction of the relation between proteins (PPI networks) and drug-protein interaction significantly improves the prediction of synergistic drug combinations.The source code and data are available at https://github.com/fatemeh-rafiei/DeepTraSynergy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
爱听歌的白开水完成签到 ,获得积分20
刚刚
Akim应助Accepted采纳,获得10
刚刚
dellajj发布了新的文献求助10
1秒前
2秒前
3秒前
斯文败类应助n0rthstar采纳,获得10
4秒前
搜集达人应助甜美的成败采纳,获得10
5秒前
hopen发布了新的文献求助10
5秒前
5秒前
cx发布了新的文献求助10
6秒前
9秒前
10秒前
FYm完成签到,获得积分10
11秒前
织心完成签到,获得积分10
11秒前
cx完成签到,获得积分20
12秒前
善学以致用应助李大侠采纳,获得10
12秒前
聪明安筠完成签到,获得积分10
13秒前
15秒前
16秒前
hehe完成签到,获得积分10
16秒前
科研楠完成签到,获得积分10
17秒前
18秒前
18秒前
洛洛完成签到,获得积分10
18秒前
18秒前
buxiangshangxue完成签到 ,获得积分10
18秒前
18秒前
内向天宇完成签到,获得积分10
19秒前
20秒前
22秒前
kk发布了新的文献求助10
22秒前
23秒前
lemshine发布了新的文献求助10
23秒前
25秒前
无花果应助稻草人采纳,获得10
25秒前
飞云之下发布了新的文献求助10
26秒前
26秒前
kingwill举报loop求助涉嫌违规
26秒前
27秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Density Functional Theory: A Practical Introduction, 2nd Edition 840
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3749268
求助须知:如何正确求助?哪些是违规求助? 3292508
关于积分的说明 10076921
捐赠科研通 3007951
什么是DOI,文献DOI怎么找? 1651910
邀请新用户注册赠送积分活动 786900
科研通“疑难数据库(出版商)”最低求助积分说明 751906