阳极
材料科学
复合数
石墨烯
化学工程
电化学
氧化物
锂(药物)
纳米技术
离子
复合材料
电极
化学
冶金
工程类
内分泌学
物理化学
有机化学
医学
作者
Binhong He,João Cunha,Zhaohui Hou,Gangyong Li,Hong Yin
标识
DOI:10.1016/j.jcis.2023.07.053
摘要
Bi2Se3 is a promising material for anodes in lithium-ion batteries (LIBs) and sodium-ion batteries (SIBs) due to its abundance, easy preparation, and high capacity. However, its practical application is hindered by low conductivity and significant volume variation during cycling, leading to poor rate capability and cycling stability. Herein, a novel composite consisting of Bi2Se3 nanoplates deposited on carbon cloth (CC) and encapsulated by reduced graphene oxide (rGO) has been designed and synthesized. The composite structure combines the advantages of the Bi2Se3 nanoplates, CC substrate, and rGO encapsulation, leading to enhanced electrochemical properties. The physical vapor deposition of Bi2Se3 nanoplates onto CC ensures a high loading of active material, while the rGO encapsulation provides a conductive and stable framework for the composite. This synergistic design allows for improved electron and ion transport, as well as efficient accommodation of the volume changes during cycling. In LIBs, the composite demonstrates a high reversible capacity of 467.5 mAh/g at 0.1 A/g after 120 cycles. Moreover, it displays an outstanding rate capability, delivering a capacity of 398.6 mAh/g at 5.0 A/g. Similarly, in SIBs, the composite maintains a reversible capacity of 375.3 mAh/g at 0.1 A/g over 100 cycles and exhibits a high-rate capacity of 286.3 mAh/g at 5.0 A/g. This work represents a significant step forward in addressing the challenges associated with Bi2Se3 as an anode material, paving the way for the development of high-performance LIBs and SIBs.
科研通智能强力驱动
Strongly Powered by AbleSci AI