高光谱成像
偏最小二乘回归
卷积神经网络
遥感
天蓬
人工智能
大气辐射传输码
计算机科学
学习迁移
均方误差
成像光谱仪
数学
模式识别(心理学)
辐射传输
机器学习
分光计
统计
地理
物理
考古
量子力学
作者
Jibo Yue,Hao Yang,Haikuan Feng,Shaoyu Han,Chengquan Zhou,Yuanyuan Fu,Wei Guo,Xinming Ma,Hongbo Qiao,Guijun Yang
标识
DOI:10.1016/j.compag.2023.108011
摘要
Leaf chlorophyll content (LCC) is a distinct indicator of crop health status used to estimate nutritional stress, diseases, and pests. Thus, accurate LCC information can assist in the monitoring of crop growth. The combined use of hyperspectral and deep learning techniques (e.g., convolutional neural network [CNN] and transfer learning [TL]) can improve the performance of crop LCC estimation. We propose a hyperspectral-to-image transform (HIT) technique for converting canopy hyperspectral reflectance into 2D images. We designed a CNN architecture called LCCNet that fuses the deep and shallow features of CNNs to improve soybean LCC estimation. This study evaluated the combined use of hyperspectral remote sensing (RS), HIT, CNN, and TL techniques to estimate soybean LCC for multiple growth stages. The LCCNet was pre-trained based on a simulated dataset (n = 114,048) from the PROSAIL radiative transfer model (RTM) and used as prior knowledge for this work. The soybean canopy hyperspectral RS dataset (n = 910) was obtained using a FieldSpec 3 spectrometer. The knowledge gained while learning to estimate LCC from PROSAIL RTM was applied when estimating field soybean LCC (Dualex readings). TL was used to enhance the soybean estimation model, called the Soybean-LCCNet (RTM + HIT + CNN + TL) model. We tested the LCC (Dualex readings) estimation performance using (a) HIT + CNN, (b) LCCNet (RTM + HIT + CNN), (c) Soybean-LCCNet (RTM + HIT + CNN + TL), and (d) widely used LCC spectral features + partial least squares regression (PLSR). Four methods were ranked based on their LCC estimation performance: Soybean-LCCNet (R2 = 0.78, RMSE = 4.13 (Dualex readings)) > HIT + CNN (R2 = 0.75, RMSE = 4.41 (Dualex readings)) > PLSR-based method (R2 = 0.61, RMSE = 5.39 (Dualex readings)) > LCCNet (R2 = 0.53, RMSE = 7.11 (Dualex readings)). The main conclusions of this work are as follows: (1) HIT + CNN can provide a more robust LCC estimation performance than the widely used LCC SIs; (2) Fusing the deep and shallow features of CNNs can improve the performance of RS soybean LCC (Dualex readings) estimation; and (3) Soybean-LCCNet can reuse the CNN layer information of a pre-trained LCCNet based on a PROSAIL RTM dataset and improve the soybean LCC estimation performance.
科研通智能强力驱动
Strongly Powered by AbleSci AI