亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Hyperspectral-to-image transform and CNN transfer learning enhancing soybean LCC estimation

高光谱成像 偏最小二乘回归 卷积神经网络 遥感 天蓬 人工智能 大气辐射传输码 计算机科学 学习迁移 均方误差 成像光谱仪 数学 模式识别(心理学) 辐射传输 机器学习 分光计 统计 地理 物理 考古 量子力学
作者
Jibo Yue,Hao Yang,Haikuan Feng,Shaoyu Han,Chengquan Zhou,Yuanyuan Fu,Wei Guo,Xinming Ma,Hongbo Qiao,Guijun Yang
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:211: 108011-108011 被引量:23
标识
DOI:10.1016/j.compag.2023.108011
摘要

Leaf chlorophyll content (LCC) is a distinct indicator of crop health status used to estimate nutritional stress, diseases, and pests. Thus, accurate LCC information can assist in the monitoring of crop growth. The combined use of hyperspectral and deep learning techniques (e.g., convolutional neural network [CNN] and transfer learning [TL]) can improve the performance of crop LCC estimation. We propose a hyperspectral-to-image transform (HIT) technique for converting canopy hyperspectral reflectance into 2D images. We designed a CNN architecture called LCCNet that fuses the deep and shallow features of CNNs to improve soybean LCC estimation. This study evaluated the combined use of hyperspectral remote sensing (RS), HIT, CNN, and TL techniques to estimate soybean LCC for multiple growth stages. The LCCNet was pre-trained based on a simulated dataset (n = 114,048) from the PROSAIL radiative transfer model (RTM) and used as prior knowledge for this work. The soybean canopy hyperspectral RS dataset (n = 910) was obtained using a FieldSpec 3 spectrometer. The knowledge gained while learning to estimate LCC from PROSAIL RTM was applied when estimating field soybean LCC (Dualex readings). TL was used to enhance the soybean estimation model, called the Soybean-LCCNet (RTM + HIT + CNN + TL) model. We tested the LCC (Dualex readings) estimation performance using (a) HIT + CNN, (b) LCCNet (RTM + HIT + CNN), (c) Soybean-LCCNet (RTM + HIT + CNN + TL), and (d) widely used LCC spectral features + partial least squares regression (PLSR). Four methods were ranked based on their LCC estimation performance: Soybean-LCCNet (R2 = 0.78, RMSE = 4.13 (Dualex readings)) > HIT + CNN (R2 = 0.75, RMSE = 4.41 (Dualex readings)) > PLSR-based method (R2 = 0.61, RMSE = 5.39 (Dualex readings)) > LCCNet (R2 = 0.53, RMSE = 7.11 (Dualex readings)). The main conclusions of this work are as follows: (1) HIT + CNN can provide a more robust LCC estimation performance than the widely used LCC SIs; (2) Fusing the deep and shallow features of CNNs can improve the performance of RS soybean LCC (Dualex readings) estimation; and (3) Soybean-LCCNet can reuse the CNN layer information of a pre-trained LCCNet based on a PROSAIL RTM dataset and improve the soybean LCC estimation performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
7秒前
12秒前
23秒前
33秒前
44秒前
123完成签到 ,获得积分10
53秒前
草木发布了新的文献求助10
1分钟前
1分钟前
草木发布了新的文献求助10
1分钟前
FashionBoy应助Kenny采纳,获得10
1分钟前
CipherSage应助草木采纳,获得10
1分钟前
1分钟前
1分钟前
Kenny发布了新的文献求助10
1分钟前
1分钟前
热心一江发布了新的文献求助30
1分钟前
wang发布了新的文献求助10
1分钟前
1分钟前
顾矜应助木头采纳,获得10
2分钟前
万能图书馆应助Kenny采纳,获得10
2分钟前
al完成签到 ,获得积分10
2分钟前
乐乐应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得30
2分钟前
斯寜应助科研通管家采纳,获得50
2分钟前
2分钟前
Kenny完成签到,获得积分10
2分钟前
2分钟前
Kenny发布了新的文献求助10
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
NexusExplorer应助存封采纳,获得10
2分钟前
2分钟前
草木发布了新的文献求助10
2分钟前
3分钟前
3分钟前
木头发布了新的文献求助10
3分钟前
3分钟前
草木发布了新的文献求助10
3分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
CRC Handbook of Chemistry and Physics 104th edition 1000
Density Functional Theory: A Practical Introduction, 2nd Edition 890
J'AI COMBATTU POUR MAO // ANNA WANG 660
Izeltabart tapatansine - AdisInsight 600
Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3760975
求助须知:如何正确求助?哪些是违规求助? 3304833
关于积分的说明 10131166
捐赠科研通 3018682
什么是DOI,文献DOI怎么找? 1657740
邀请新用户注册赠送积分活动 791708
科研通“疑难数据库(出版商)”最低求助积分说明 754538