Sensorless Temperature Monitoring of Lithium-Ion Batteries by Integrating Physics With Machine Learning

电池(电) 人工神经网络 计算机科学 卷积神经网络 电压 热的 荷电状态 锂(药物) 汽车工程 机器学习 人工智能 模拟 工程类 电气工程 功率(物理) 物理 医学 量子力学 内分泌学 气象学
作者
Yusheng Zheng,Yunhong Che,Xiaosong Hu,Xin Sui,Remus Teodorescu
出处
期刊:IEEE Transactions on Transportation Electrification 卷期号:10 (2): 2643-2652 被引量:10
标识
DOI:10.1109/tte.2023.3294417
摘要

The large-scale application of lithium-ion batteries in electric vehicles requires meticulous battery management to guarantee vehicular safety and performance. Temperatures play a significant role in the safety, performance, and lifetime of lithium-ion batteries. Therefore, the state of temperature (SOT) of batteries should be monitored timely by the battery management system. Due to limited onboard temperature sensors in electric vehicles, the SOT of most batteries must be estimated through other measured signals such as current and voltage. To this end, this paper develops an accurate method to estimate the surface temperature of batteries by combing the physics-based thermal model with machine learning. A lumped-mass thermal model is applied to provide prior knowledge of battery temperatures for machine learning. Temperature-related feature, such as internal resistance, is extracted in real-time and fed into the machine learning framework as supplementary inputs to enhance the accuracy of the estimation. A machine learning model, which combines a convolutional neural network with a long short-term memory neural network, is sequentially integrated with the thermal model to learn the mismatch between the model outputs and the real temperature values. The proposed method has been verified against experimental results, with accuracy improvement of 79.37% and 86.24% compared to conventional pure thermal model-based and pure data-driven approaches respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Dr彭0923完成签到,获得积分10
1秒前
Andy发布了新的文献求助10
1秒前
1秒前
青木完成签到 ,获得积分10
1秒前
Orange应助默默的鬼神采纳,获得10
2秒前
2秒前
wanci应助青豆采纳,获得10
3秒前
1601929058x完成签到,获得积分10
4秒前
CipherSage应助ren采纳,获得10
4秒前
lv完成签到,获得积分10
5秒前
自行输入昵称完成签到 ,获得积分10
6秒前
欣喜的莫茗完成签到 ,获得积分10
6秒前
聪明伊完成签到,获得积分10
7秒前
我是老大应助Zoe采纳,获得50
7秒前
Prozac发布了新的文献求助50
7秒前
乐乐应助小琦琦采纳,获得10
7秒前
xu完成签到 ,获得积分20
8秒前
9秒前
10秒前
10秒前
情怀应助科研小白采纳,获得10
10秒前
谦让寒云完成签到 ,获得积分10
12秒前
可乐发布了新的文献求助10
13秒前
Zo完成签到,获得积分10
13秒前
大模型应助liu采纳,获得10
14秒前
美丽的又菡完成签到,获得积分10
15秒前
16秒前
16秒前
Akim应助Sun采纳,获得10
17秒前
18秒前
Deadman完成签到,获得积分10
18秒前
Ruyii完成签到,获得积分10
19秒前
20秒前
22秒前
活泼蜡烛发布了新的文献求助10
22秒前
22秒前
科研小白发布了新的文献求助10
23秒前
憨憨发布了新的文献求助10
23秒前
MOJIN发布了新的文献求助10
24秒前
ZDY完成签到,获得积分10
24秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3992229
求助须知:如何正确求助?哪些是违规求助? 3533231
关于积分的说明 11261619
捐赠科研通 3272656
什么是DOI,文献DOI怎么找? 1805867
邀请新用户注册赠送积分活动 882720
科研通“疑难数据库(出版商)”最低求助积分说明 809452