Sensorless Temperature Monitoring of Lithium-Ion Batteries by Integrating Physics With Machine Learning

电池(电) 人工神经网络 计算机科学 卷积神经网络 电压 热的 荷电状态 锂(药物) 汽车工程 机器学习 人工智能 模拟 工程类 电气工程 功率(物理) 物理 医学 量子力学 内分泌学 气象学
作者
Yusheng Zheng,Yunhong Che,Xiaosong Hu,Xin Sui,Remus Teodorescu
出处
期刊:IEEE Transactions on Transportation Electrification 卷期号:10 (2): 2643-2652 被引量:10
标识
DOI:10.1109/tte.2023.3294417
摘要

The large-scale application of lithium-ion batteries in electric vehicles requires meticulous battery management to guarantee vehicular safety and performance. Temperatures play a significant role in the safety, performance, and lifetime of lithium-ion batteries. Therefore, the state of temperature (SOT) of batteries should be monitored timely by the battery management system. Due to limited onboard temperature sensors in electric vehicles, the SOT of most batteries must be estimated through other measured signals such as current and voltage. To this end, this paper develops an accurate method to estimate the surface temperature of batteries by combing the physics-based thermal model with machine learning. A lumped-mass thermal model is applied to provide prior knowledge of battery temperatures for machine learning. Temperature-related feature, such as internal resistance, is extracted in real-time and fed into the machine learning framework as supplementary inputs to enhance the accuracy of the estimation. A machine learning model, which combines a convolutional neural network with a long short-term memory neural network, is sequentially integrated with the thermal model to learn the mismatch between the model outputs and the real temperature values. The proposed method has been verified against experimental results, with accuracy improvement of 79.37% and 86.24% compared to conventional pure thermal model-based and pure data-driven approaches respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
2秒前
2秒前
爆米花应助港岛妹妹采纳,获得10
3秒前
3秒前
4秒前
4秒前
CodeCraft应助科研通管家采纳,获得10
4秒前
Hululu发布了新的文献求助10
4秒前
华仔应助科研通管家采纳,获得10
5秒前
奶茶发布了新的文献求助10
5秒前
平凡完成签到,获得积分10
5秒前
小二郎应助科研通管家采纳,获得10
5秒前
bkagyin应助科研通管家采纳,获得10
5秒前
cocolu应助科研通管家采纳,获得10
5秒前
深情安青应助科研通管家采纳,获得10
5秒前
大模型应助科研通管家采纳,获得10
5秒前
嗯哼应助科研通管家采纳,获得20
6秒前
伟伟发布了新的文献求助10
6秒前
cfl完成签到,获得积分20
6秒前
7秒前
LANER发布了新的文献求助10
7秒前
9秒前
9秒前
Sindyyyyyy应助朴素海亦采纳,获得10
11秒前
失眠觅云发布了新的文献求助10
11秒前
ZWGS完成签到,获得积分20
11秒前
斯文败类应助化学y采纳,获得10
11秒前
11秒前
dou完成签到,获得积分10
11秒前
13秒前
华仔应助积极的千雁采纳,获得10
13秒前
yvejune应助胡巴采纳,获得10
13秒前
英俊的铭应助小毕可乐采纳,获得10
14秒前
ZWGS发布了新的文献求助10
14秒前
范啦啦啦发布了新的文献求助10
14秒前
bing完成签到,获得积分10
16秒前
xixia发布了新的文献求助10
16秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Cognitive Paradigms in Knowledge Organisation 500
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3306889
求助须知:如何正确求助?哪些是违规求助? 2940724
关于积分的说明 8498169
捐赠科研通 2614869
什么是DOI,文献DOI怎么找? 1428544
科研通“疑难数据库(出版商)”最低求助积分说明 663445
邀请新用户注册赠送积分活动 648283