An improved GNN using dynamic graph embedding mechanism: A novel end-to-end framework for rolling bearing fault diagnosis under variable working conditions

断层(地质) 计算机科学 图形 嵌入 卷积神经网络 方位(导航) 模式识别(心理学) 人工智能 人工神经网络 控制理论(社会学) 理论计算机科学 地质学 地震学 控制(管理)
作者
Zidong Yu,Changhe Zhang,Chao Deng
出处
期刊:Mechanical Systems and Signal Processing [Elsevier]
卷期号:200: 110534-110534 被引量:98
标识
DOI:10.1016/j.ymssp.2023.110534
摘要

Traditional deep learning (DL)-based rolling bearing fault diagnosis methods usually use signals collected under specific working condition to train the diagnosis models. This may lead to the lack of domain adaptive ability of these trained models, thus making it difficult to obtain satisfactory diagnosis accuracy when working conditions fluctuate. To address it, a novel fault diagnosis framework based on the graph neural network (GNN) and dynamic graph embedding mechanism (DGE) was proposed in this paper. Firstly, convolutional neural network (CNN) is used to extract the hidden fault features from raw bearing vibration signals. Secondly, DGE module is designed with edge dropout mechanism to transform the features exacted by CNN into higher-level graph-structured features dynamically. Then, GNN is applied to further mine the fault features sensitivity to the fluctuating bearing working conditions. Finally, a novel mechanism named node voters is proposed to replace traditional graph-level attribute update function in GNN to obtain optimal fault pattern recognition results. Experiment results shows that the proposed framework can not only realize the end-to-end fault diagnosis of rolling bearings, but also has excellent domain adaptive ability to obtain better stability and diagnosis accuracy under variable working conditions compared to traditional DL-based methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Medy发布了新的文献求助10
刚刚
刚刚
多科特张发布了新的文献求助10
刚刚
幸运星辰完成签到 ,获得积分10
刚刚
Kirin发布了新的文献求助10
刚刚
传奇3应助墨颜采纳,获得10
2秒前
英俊的铭应助95采纳,获得10
2秒前
隔壁小王完成签到,获得积分10
2秒前
爆米花应助宝宝采纳,获得10
4秒前
4秒前
5秒前
Chloe发布了新的文献求助10
5秒前
6秒前
FCH2023完成签到,获得积分10
6秒前
energetic完成签到,获得积分10
6秒前
7秒前
7秒前
钱多多完成签到 ,获得积分10
7秒前
8秒前
wanci应助小葡萄采纳,获得10
8秒前
8秒前
长亭完成签到,获得积分10
9秒前
奥利奥大王完成签到,获得积分10
9秒前
nn发布了新的文献求助10
10秒前
QinYuan发布了新的文献求助10
11秒前
合适的小馒头完成签到,获得积分10
11秒前
11秒前
CompJIN发布了新的文献求助10
11秒前
小涛涛发布了新的文献求助10
11秒前
11秒前
酷波er应助悦耳的果汁采纳,获得10
12秒前
12秒前
复杂的音响完成签到,获得积分10
13秒前
谨慎青亦发布了新的文献求助10
13秒前
保卫时光完成签到,获得积分10
13秒前
14秒前
搜集达人应助沈平灵采纳,获得20
14秒前
张昭蓉完成签到,获得积分10
14秒前
14秒前
顾矜应助催催催采纳,获得10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Linear and Nonlinear Functional Analysis with Applications, Second Edition 388
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5578106
求助须知:如何正确求助?哪些是违规求助? 4663067
关于积分的说明 14744528
捐赠科研通 4603755
什么是DOI,文献DOI怎么找? 2526647
邀请新用户注册赠送积分活动 1496234
关于科研通互助平台的介绍 1465674