An improved GNN using dynamic graph embedding mechanism: A novel end-to-end framework for rolling bearing fault diagnosis under variable working conditions

断层(地质) 计算机科学 图形 嵌入 卷积神经网络 方位(导航) 模式识别(心理学) 人工智能 人工神经网络 控制理论(社会学) 理论计算机科学 地质学 地震学 控制(管理)
作者
Zidong Yu,Changhe Zhang,Chao Deng
出处
期刊:Mechanical Systems and Signal Processing [Elsevier BV]
卷期号:200: 110534-110534 被引量:60
标识
DOI:10.1016/j.ymssp.2023.110534
摘要

Traditional deep learning (DL)-based rolling bearing fault diagnosis methods usually use signals collected under specific working condition to train the diagnosis models. This may lead to the lack of domain adaptive ability of these trained models, thus making it difficult to obtain satisfactory diagnosis accuracy when working conditions fluctuate. To address it, a novel fault diagnosis framework based on the graph neural network (GNN) and dynamic graph embedding mechanism (DGE) was proposed in this paper. Firstly, convolutional neural network (CNN) is used to extract the hidden fault features from raw bearing vibration signals. Secondly, DGE module is designed with edge dropout mechanism to transform the features exacted by CNN into higher-level graph-structured features dynamically. Then, GNN is applied to further mine the fault features sensitivity to the fluctuating bearing working conditions. Finally, a novel mechanism named node voters is proposed to replace traditional graph-level attribute update function in GNN to obtain optimal fault pattern recognition results. Experiment results shows that the proposed framework can not only realize the end-to-end fault diagnosis of rolling bearings, but also has excellent domain adaptive ability to obtain better stability and diagnosis accuracy under variable working conditions compared to traditional DL-based methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷酷的小凡完成签到,获得积分10
1秒前
江波完成签到,获得积分20
2秒前
唐新惠完成签到 ,获得积分10
2秒前
咩咩应助小伊采纳,获得10
3秒前
3秒前
4秒前
NexusExplorer应助晓畅采纳,获得10
4秒前
4秒前
yemiao完成签到,获得积分10
7秒前
8秒前
ever完成签到,获得积分10
9秒前
量子星尘发布了新的文献求助10
10秒前
wlz发布了新的文献求助10
10秒前
chenu发布了新的文献求助30
12秒前
13秒前
14秒前
14秒前
hustscholar发布了新的文献求助30
18秒前
18秒前
一一完成签到,获得积分10
18秒前
俞晓完成签到 ,获得积分10
18秒前
22秒前
22秒前
贵月完成签到,获得积分10
25秒前
jiu完成签到,获得积分10
25秒前
科研通AI5应助静静等待采纳,获得10
25秒前
领导范儿应助自觉静竹采纳,获得10
25秒前
25秒前
好运常在发布了新的文献求助10
25秒前
26秒前
26秒前
27秒前
浮游应助火星上向珊采纳,获得10
27秒前
浮游应助火星上向珊采纳,获得10
27秒前
鱼柒完成签到 ,获得积分10
27秒前
liyk发布了新的文献求助10
28秒前
29秒前
量子星尘发布了新的文献求助10
29秒前
log完成签到,获得积分10
30秒前
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4601124
求助须知:如何正确求助?哪些是违规求助? 4010920
关于积分的说明 12418075
捐赠科研通 3690904
什么是DOI,文献DOI怎么找? 2034732
邀请新用户注册赠送积分活动 1068013
科研通“疑难数据库(出版商)”最低求助积分说明 952626