亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

An improved GNN using dynamic graph embedding mechanism: A novel end-to-end framework for rolling bearing fault diagnosis under variable working conditions

断层(地质) 计算机科学 图形 嵌入 卷积神经网络 方位(导航) 模式识别(心理学) 人工智能 人工神经网络 控制理论(社会学) 理论计算机科学 地质学 地震学 控制(管理)
作者
Zidong Yu,Changhe Zhang,Chao Deng
出处
期刊:Mechanical Systems and Signal Processing [Elsevier]
卷期号:200: 110534-110534 被引量:43
标识
DOI:10.1016/j.ymssp.2023.110534
摘要

Traditional deep learning (DL)-based rolling bearing fault diagnosis methods usually use signals collected under specific working condition to train the diagnosis models. This may lead to the lack of domain adaptive ability of these trained models, thus making it difficult to obtain satisfactory diagnosis accuracy when working conditions fluctuate. To address it, a novel fault diagnosis framework based on the graph neural network (GNN) and dynamic graph embedding mechanism (DGE) was proposed in this paper. Firstly, convolutional neural network (CNN) is used to extract the hidden fault features from raw bearing vibration signals. Secondly, DGE module is designed with edge dropout mechanism to transform the features exacted by CNN into higher-level graph-structured features dynamically. Then, GNN is applied to further mine the fault features sensitivity to the fluctuating bearing working conditions. Finally, a novel mechanism named node voters is proposed to replace traditional graph-level attribute update function in GNN to obtain optimal fault pattern recognition results. Experiment results shows that the proposed framework can not only realize the end-to-end fault diagnosis of rolling bearings, but also has excellent domain adaptive ability to obtain better stability and diagnosis accuracy under variable working conditions compared to traditional DL-based methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
宝宝烤面包完成签到 ,获得积分10
2秒前
37秒前
43秒前
云枝驳回了杳鸢应助
46秒前
茜茜发布了新的文献求助10
49秒前
52秒前
杨旭完成签到 ,获得积分10
54秒前
茜茜完成签到,获得积分10
59秒前
1分钟前
矫健的man完成签到,获得积分20
1分钟前
伏城完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
矫健的man发布了新的文献求助10
1分钟前
dingdingding完成签到,获得积分10
1分钟前
Grace完成签到 ,获得积分10
1分钟前
丘比特应助wuye采纳,获得10
1分钟前
今后应助科研通管家采纳,获得10
1分钟前
1分钟前
YifanWang应助科研通管家采纳,获得20
1分钟前
YifanWang应助科研通管家采纳,获得20
1分钟前
1分钟前
1分钟前
1分钟前
大个应助咕咕咕冒泡采纳,获得10
1分钟前
2分钟前
2分钟前
2分钟前
醉倒天瓢完成签到 ,获得积分10
2分钟前
jssdeid完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
科研一一发布了新的文献求助10
2分钟前
充电宝应助Phy采纳,获得30
2分钟前
婷123完成签到 ,获得积分10
2分钟前
2分钟前
NexusExplorer应助科研一一采纳,获得10
2分钟前
奈思完成签到 ,获得积分10
2分钟前
2分钟前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3229670
求助须知:如何正确求助?哪些是违规求助? 2877212
关于积分的说明 8198498
捐赠科研通 2544654
什么是DOI,文献DOI怎么找? 1374549
科研通“疑难数据库(出版商)”最低求助积分说明 646996
邀请新用户注册赠送积分活动 621774