An improved GNN using dynamic graph embedding mechanism: A novel end-to-end framework for rolling bearing fault diagnosis under variable working conditions

断层(地质) 计算机科学 图形 嵌入 卷积神经网络 方位(导航) 模式识别(心理学) 人工智能 人工神经网络 控制理论(社会学) 理论计算机科学 地质学 地震学 控制(管理)
作者
Zidong Yu,Changhe Zhang,Chao Deng
出处
期刊:Mechanical Systems and Signal Processing [Elsevier BV]
卷期号:200: 110534-110534 被引量:56
标识
DOI:10.1016/j.ymssp.2023.110534
摘要

Traditional deep learning (DL)-based rolling bearing fault diagnosis methods usually use signals collected under specific working condition to train the diagnosis models. This may lead to the lack of domain adaptive ability of these trained models, thus making it difficult to obtain satisfactory diagnosis accuracy when working conditions fluctuate. To address it, a novel fault diagnosis framework based on the graph neural network (GNN) and dynamic graph embedding mechanism (DGE) was proposed in this paper. Firstly, convolutional neural network (CNN) is used to extract the hidden fault features from raw bearing vibration signals. Secondly, DGE module is designed with edge dropout mechanism to transform the features exacted by CNN into higher-level graph-structured features dynamically. Then, GNN is applied to further mine the fault features sensitivity to the fluctuating bearing working conditions. Finally, a novel mechanism named node voters is proposed to replace traditional graph-level attribute update function in GNN to obtain optimal fault pattern recognition results. Experiment results shows that the proposed framework can not only realize the end-to-end fault diagnosis of rolling bearings, but also has excellent domain adaptive ability to obtain better stability and diagnosis accuracy under variable working conditions compared to traditional DL-based methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
stefan发布了新的文献求助10
1秒前
大傻春发布了新的文献求助10
1秒前
852应助亮亮采纳,获得10
1秒前
2秒前
2秒前
fff发布了新的文献求助10
2秒前
庞鲂发布了新的文献求助30
2秒前
勤劳的老九应助兔年吉祥采纳,获得10
3秒前
量子星尘发布了新的文献求助10
3秒前
3秒前
sofar完成签到 ,获得积分10
3秒前
3秒前
4秒前
小马甲应助sup采纳,获得10
4秒前
yyyyyyy111发布了新的文献求助10
4秒前
现代的小馒头完成签到,获得积分10
4秒前
wxy发布了新的文献求助10
4秒前
万能图书馆应助小地蛋采纳,获得10
4秒前
无花果应助豆豆采纳,获得10
4秒前
5秒前
您的帮助将会点亮世界完成签到,获得积分10
5秒前
6秒前
yar应助lcy采纳,获得10
6秒前
要减肥的香芦完成签到,获得积分10
7秒前
hunbaekkkkk完成签到 ,获得积分10
8秒前
qiu完成签到,获得积分10
8秒前
十一发布了新的文献求助10
9秒前
9秒前
9秒前
wocala发布了新的文献求助30
9秒前
今后应助辛辛采纳,获得10
9秒前
10秒前
11秒前
zxy发布了新的文献求助10
11秒前
科研通AI2S应助Suen采纳,获得10
11秒前
乐乐应助fff采纳,获得10
12秒前
13秒前
SIiveryyyy发布了新的文献求助10
13秒前
完美世界应助Vincenzo采纳,获得10
13秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Effective Learning and Mental Wellbeing 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3974844
求助须知:如何正确求助?哪些是违规求助? 3519270
关于积分的说明 11197844
捐赠科研通 3255496
什么是DOI,文献DOI怎么找? 1797791
邀请新用户注册赠送积分活动 877187
科研通“疑难数据库(出版商)”最低求助积分说明 806202