石墨烯
材料科学
化学工程
氧化物
色散(光学)
胶体
拉曼光谱
分散稳定性
插层(化学)
纳米颗粒
纳米技术
无机化学
化学
工程类
冶金
物理
光学
作者
Jian Huang,Qian Zhang,Zhengcai Yang,Hailong Hu,Mesfin Manuka,Yuting Zhao,Xin Wang,Wufeng Wang,Rong Yang,Shouwei Jian,Hongbo Tan,Xiangguo Li,Yang Lv,Pei Tang,MA Bao-guo
出处
期刊:RSC Advances
[The Royal Society of Chemistry]
日期:2023-01-01
卷期号:13 (29): 20081-20092
被引量:1
摘要
Recently, ethanol has shown promising potential in the large-scale reduction of graphene oxide (GO) into graphene. However, dispersion of GO powder in ethanol is a challenge due to its poor affinity, which hinders permeation and intercalation of ethanol between GO molecule layers. In this paper, phenyl-modified colloidal silica nanospheres (PSNS) were synthesized by phenyl-tri-ethoxy-silane (PTES) and tetra-ethyl ortho-silicate (TEOS) using a sol-gel method. PSNS was then assembled onto a GO surface to form a PSNS@GO structure by possible non-covalent π-π stacking interactions between the phenyl groups and GO molecules. The surface morphology, chemical composition, and dispersion stability were analyzed by scanning electron microscopy, Fourier transform infrared spectroscopy, thermogravimetry, Raman spectroscopy, X-ray diffractometry, nuclear magnetic resonance, and particle sedimentation test. The results showed that the as-assembled PSNS@GO suspension had excellent dispersion stability with an optimal PSNS concentration of 5 vol% PTES. With the optimized PSNS@GO, ethanol can permeate between the GO layers and intercalate along with PSNS particles via formation of hydrogen bonds between assembled PSNS on GO and ethanol, achieving a stable dispersion of GO in ethanol. The optimized PSNS@GO powder remained redispersible after drying and milling according to this interaction mechanism which is favorable for large scale reduction processes. Higher PTES concentration may result in agglomeration of PSNS and formation of wrapping structures of PSNS@GO after drying and worsen its dispersion capability.
科研通智能强力驱动
Strongly Powered by AbleSci AI