Assembling phenyl-modified colloidal silica on graphene oxide towards ethanol redispersible graphene oxide powder

石墨烯 材料科学 化学工程 氧化物 色散(光学) 胶体 拉曼光谱 分散稳定性 插层(化学) 纳米颗粒 纳米技术 无机化学 化学 工程类 冶金 物理 光学
作者
Jian Huang,Qian Zhang,Zhengcai Yang,Hailong Hu,Mesfin Manuka,Yuting Zhao,Xin Wang,Wufeng Wang,Rong Yang,Shouwei Jian,Hongbo Tan,Xiangguo Li,Yang Lv,Pei Tang,MA Bao-guo
出处
期刊:RSC Advances [The Royal Society of Chemistry]
卷期号:13 (29): 20081-20092 被引量:1
标识
DOI:10.1039/d3ra02256k
摘要

Recently, ethanol has shown promising potential in the large-scale reduction of graphene oxide (GO) into graphene. However, dispersion of GO powder in ethanol is a challenge due to its poor affinity, which hinders permeation and intercalation of ethanol between GO molecule layers. In this paper, phenyl-modified colloidal silica nanospheres (PSNS) were synthesized by phenyl-tri-ethoxy-silane (PTES) and tetra-ethyl ortho-silicate (TEOS) using a sol-gel method. PSNS was then assembled onto a GO surface to form a PSNS@GO structure by possible non-covalent π-π stacking interactions between the phenyl groups and GO molecules. The surface morphology, chemical composition, and dispersion stability were analyzed by scanning electron microscopy, Fourier transform infrared spectroscopy, thermogravimetry, Raman spectroscopy, X-ray diffractometry, nuclear magnetic resonance, and particle sedimentation test. The results showed that the as-assembled PSNS@GO suspension had excellent dispersion stability with an optimal PSNS concentration of 5 vol% PTES. With the optimized PSNS@GO, ethanol can permeate between the GO layers and intercalate along with PSNS particles via formation of hydrogen bonds between assembled PSNS on GO and ethanol, achieving a stable dispersion of GO in ethanol. The optimized PSNS@GO powder remained redispersible after drying and milling according to this interaction mechanism which is favorable for large scale reduction processes. Higher PTES concentration may result in agglomeration of PSNS and formation of wrapping structures of PSNS@GO after drying and worsen its dispersion capability.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Ava应助温暖的颜演采纳,获得10
刚刚
Ky_Mac应助Lee采纳,获得20
1秒前
ww发布了新的文献求助10
1秒前
1秒前
2秒前
抗氧剂完成签到,获得积分20
3秒前
直率的玉米完成签到 ,获得积分10
3秒前
英俊的铭应助ZMl采纳,获得10
3秒前
3秒前
爆米花应助wh雨采纳,获得10
3秒前
丘比特应助冷水鱼采纳,获得10
3秒前
LiZH完成签到,获得积分10
4秒前
5秒前
传奇3应助ivy采纳,获得10
5秒前
5秒前
Persepolis完成签到,获得积分10
5秒前
mm完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
6秒前
小蘑菇应助sweettt3采纳,获得10
6秒前
8秒前
花粉过敏发布了新的文献求助10
8秒前
xianglinnnn完成签到,获得积分10
8秒前
陈2026完成签到,获得积分10
8秒前
xmj发布了新的文献求助10
8秒前
8秒前
善学以致用应助脆脆鲨采纳,获得10
8秒前
跳跃完成签到,获得积分10
8秒前
Wang完成签到,获得积分0
10秒前
10秒前
sssssss发布了新的文献求助10
10秒前
扶瑶可接发布了新的文献求助10
10秒前
11秒前
罐装冰块完成签到,获得积分10
11秒前
shiizii应助激昂的吐司采纳,获得10
11秒前
11秒前
11秒前
淡淡大山完成签到,获得积分20
11秒前
kangnakangna完成签到,获得积分10
12秒前
隐形曼青应助刘云采纳,获得10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5710603
求助须知:如何正确求助?哪些是违规求助? 5199800
关于积分的说明 15261321
捐赠科研通 4863194
什么是DOI,文献DOI怎么找? 2610478
邀请新用户注册赠送积分活动 1560802
关于科研通互助平台的介绍 1518423