亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A GNN-Based Adversarial Internet of Things Malware Detection Framework for Critical Infrastructure: Studying Gafgyt, Mirai and Tsunami Campaigns

对抗制 恶意软件 计算机科学 人工智能 机器学习 探测器 分类器(UML) 数据挖掘 计算机安全 电信
作者
Bardia Esmaeili,Amin Azmoodeh,Ali Dehghantanha,Gautam Srivastava,Hadis Karimipour,Jerry Chun‐Wei Lin
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:11 (16): 26826-26836 被引量:5
标识
DOI:10.1109/jiot.2023.3298663
摘要

Significant advancement in Deep learning (DL) has turned it into an integral part of robust approaches for addressing cybersecurity problems in both current and aging infrastructures. Control Flow Graphs (CFGs) have demonstrated their effectiveness as leading choices that result in high-performing classifiers among various data representations used by DL-based models. Recently, Graph Neural Networks (GNNs) have made breakthroughs in the graph domain, and before long, they were jointly used with CFGs to train performant malware classifiers. However, graph-based adversarial attacks have caused suspicion about the predictions these graph-based malware classifiers make, and few studies have investigated detecting such attacks. Therefore, this paper proposes a novel GNN-based adversarial detector for identifying adversarial CFGs with higher efficacy than the previous work. This adversarial detector is placed in a data pipeline before a GNN-based malware classifier. In this paper, we solve the adversarial detection problem as an anomaly detection scenario and train the adversarial detector to learn the normal data distribution. Our GNN-based adversarial detector detects 98.96% of all adversarial CFGs, which is 1.17% higher than the previous method, with a 5.95% lower False Positive Rate (FPR). In the most hazardous category of the attack, where the attacker intends to render a malicious example as a benign input, we achieve a 4.85% boost compared to the previous competitors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
6秒前
8秒前
感动白开水完成签到,获得积分10
10秒前
10秒前
科研废人发布了新的文献求助10
10秒前
橘绿发布了新的文献求助10
14秒前
20秒前
康康XY发布了新的文献求助10
24秒前
浦肯野应助444采纳,获得30
24秒前
华仔应助感动白开水采纳,获得10
39秒前
传奇3应助科研废人采纳,获得10
49秒前
52秒前
52秒前
慕青应助科研通管家采纳,获得10
55秒前
我是老大应助科研通管家采纳,获得10
55秒前
VDC应助科研通管家采纳,获得30
55秒前
科研废人完成签到,获得积分10
1分钟前
lobule发布了新的文献求助10
1分钟前
1分钟前
GUAN发布了新的文献求助10
1分钟前
等待世平完成签到,获得积分10
1分钟前
1分钟前
1分钟前
小蘑菇应助缓慢易云采纳,获得10
1分钟前
lll发布了新的文献求助10
1分钟前
热心的戎完成签到,获得积分10
1分钟前
铁头完成签到 ,获得积分10
1分钟前
1分钟前
insomnia417完成签到,获得积分0
1分钟前
1分钟前
1分钟前
缓慢易云发布了新的文献求助10
1分钟前
大模型应助小陈加油呀采纳,获得10
1分钟前
heiseyoumo0228完成签到,获得积分10
2分钟前
胡庆余完成签到 ,获得积分10
2分钟前
cacaldon完成签到,获得积分10
2分钟前
科研民工_郭完成签到 ,获得积分10
2分钟前
2分钟前
heiseyoumo0228关注了科研通微信公众号
2分钟前
VDC发布了新的文献求助10
2分钟前
高分求助中
Genetics: From Genes to Genomes 3000
Production Logging: Theoretical and Interpretive Elements 2500
Continuum thermodynamics and material modelling 2000
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Diabetes: miniguías Asklepios 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3471367
求助须知:如何正确求助?哪些是违规求助? 3064459
关于积分的说明 9088158
捐赠科研通 2755072
什么是DOI,文献DOI怎么找? 1511775
邀请新用户注册赠送积分活动 698575
科研通“疑难数据库(出版商)”最低求助积分说明 698449