数学
贝索夫空间
单调函数
傅里叶级数
系列(地层学)
规范(哲学)
纯数学
三角学
平滑度
数学分析
插值空间
功能分析
基因
法学
化学
古生物学
生物
生物化学
政治学
作者
Birendra Kumar Singh,U. P. Singh
摘要
Defined on the top of classical -spaces, the Besov spaces of periodic functions are good at encoding the smoothness properties of their elements. These spaces are also characterized in terms of summability conditions on the coefficients in trigonometric series expansions of their elements. In this paper, we study the approximation properties of -periodic functions in a Besov space under a norm involving the seminorm associated with the space. To achieve our results, we use a summability method presented by a lower triangular matrix with monotonic rows.
科研通智能强力驱动
Strongly Powered by AbleSci AI