Bayesian Gappy Proper Orthogonal Decomposition for Aerodynamic Data Fusion

计算机科学 传感器融合 空气动力学 稳健性(进化) 降维 不确定度量化 试验数据 维数之咒 算法 工程类 机器学习 航空航天工程 生物化学 化学 基因 程序设计语言
作者
Anna Bertram,Philipp Bekemeyer,Matthias Held
出处
期刊:AIAA Journal [American Institute of Aeronautics and Astronautics]
卷期号:61 (9): 4032-4044
标识
DOI:10.2514/1.j062356
摘要

During the development of an aircraft, a multitude of aerodynamic data are required for different flight conditions throughout the flight envelope. Nowadays, a large portion of these data are routinely acquired by computational fluid dynamics simulations. However, due to modeling and convergence issues especially for extreme flight conditions, numerical data cannot be reliably generated for the entire flight envelope yet. Hence, numerical data are complemented by data from wind tunnel experiments and flight testing. However, the data from these different sources will always show some discrepancies to deal with. Data fusion methods aim at combining the individual strengths and weaknesses of data from different sources in order to provide a consistent data set for the entire parameter domain. In this work we propose an extension to the well-established Gappy proper orthogonal decomposition technique by reformulating the least-squares problem as a regression task. A Bayesian perspective is imposed to account for uncertainties during the data fusion process. This involves a kernelized regression formulation that also addresses the problem of linearity imposed by the dimensionality reduction method and therefore adds more flexibility to the approach. The performance and robustness of the approach is demonstrated investigating an industrially relevant, large-scale aircraft test case fusing high-quality experimental and numerical data. Compared to the established Gappy POD approach, the new method shows a significantly improved agreement with the observed wind tunnel data for the investigated test case. In addition, the new approach enables to provide credible bounds for the fused result, which serve as an indicator for the associated uncertainty.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
WY发布了新的文献求助10
1秒前
2秒前
2秒前
成就山河发布了新的文献求助10
2秒前
3秒前
领导范儿应助sssyq采纳,获得10
4秒前
4秒前
落寞的书易完成签到 ,获得积分10
5秒前
大方弘文发布了新的文献求助10
5秒前
5秒前
6秒前
谦让玲发布了新的文献求助10
6秒前
奇奇淼发布了新的文献求助10
6秒前
Lucas应助小田心采纳,获得10
7秒前
顺利紫山发布了新的文献求助10
7秒前
青春完成签到 ,获得积分10
7秒前
叶叶完成签到,获得积分10
8秒前
深情安青应助靓丽的发箍采纳,获得10
10秒前
壳米应助谦让玲采纳,获得10
13秒前
17秒前
上官若男应助哈哈哈哈采纳,获得10
17秒前
孙燕应助zhao采纳,获得30
17秒前
雪山完成签到,获得积分10
17秒前
17秒前
19秒前
谦让玲完成签到,获得积分10
19秒前
无花果应助讨厌科研采纳,获得10
20秒前
22秒前
22秒前
NexusExplorer应助hanleiharry1采纳,获得10
22秒前
24秒前
25秒前
26秒前
Owen应助八九采纳,获得10
28秒前
哈哈哈哈发布了新的文献求助10
28秒前
CAOHOU应助张wx_100采纳,获得10
28秒前
28秒前
Jasper应助东晓采纳,获得10
30秒前
成就宛完成签到,获得积分10
30秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989390
求助须知:如何正确求助?哪些是违规求助? 3531487
关于积分的说明 11254109
捐赠科研通 3270153
什么是DOI,文献DOI怎么找? 1804887
邀请新用户注册赠送积分活动 882087
科研通“疑难数据库(出版商)”最低求助积分说明 809174