Bayesian Gappy Proper Orthogonal Decomposition for Aerodynamic Data Fusion

计算机科学 传感器融合 空气动力学 稳健性(进化) 降维 不确定度量化 试验数据 维数之咒 算法 工程类 机器学习 航空航天工程 生物化学 基因 化学 程序设计语言
作者
Anna Bertram,Philipp Bekemeyer,Matthias Held
出处
期刊:AIAA Journal [American Institute of Aeronautics and Astronautics]
卷期号:61 (9): 4032-4044
标识
DOI:10.2514/1.j062356
摘要

During the development of an aircraft, a multitude of aerodynamic data are required for different flight conditions throughout the flight envelope. Nowadays, a large portion of these data are routinely acquired by computational fluid dynamics simulations. However, due to modeling and convergence issues especially for extreme flight conditions, numerical data cannot be reliably generated for the entire flight envelope yet. Hence, numerical data are complemented by data from wind tunnel experiments and flight testing. However, the data from these different sources will always show some discrepancies to deal with. Data fusion methods aim at combining the individual strengths and weaknesses of data from different sources in order to provide a consistent data set for the entire parameter domain. In this work we propose an extension to the well-established Gappy proper orthogonal decomposition technique by reformulating the least-squares problem as a regression task. A Bayesian perspective is imposed to account for uncertainties during the data fusion process. This involves a kernelized regression formulation that also addresses the problem of linearity imposed by the dimensionality reduction method and therefore adds more flexibility to the approach. The performance and robustness of the approach is demonstrated investigating an industrially relevant, large-scale aircraft test case fusing high-quality experimental and numerical data. Compared to the established Gappy POD approach, the new method shows a significantly improved agreement with the observed wind tunnel data for the investigated test case. In addition, the new approach enables to provide credible bounds for the fused result, which serve as an indicator for the associated uncertainty.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
NIHAO完成签到 ,获得积分10
刚刚
2秒前
疯狂的ying完成签到,获得积分10
2秒前
li完成签到,获得积分10
3秒前
Akim应助再睡一夏采纳,获得10
3秒前
香烟小厨发布了新的文献求助10
4秒前
rain123驳回了Ava应助
4秒前
zhh发布了新的文献求助10
4秒前
小白完成签到 ,获得积分10
4秒前
喵喵应助鄂成危采纳,获得20
5秒前
6秒前
CodeCraft应助李白采纳,获得10
6秒前
ethan2801完成签到,获得积分10
8秒前
8秒前
ooa4321完成签到,获得积分10
9秒前
顾矜应助LU采纳,获得10
9秒前
思源应助坚强的严青采纳,获得10
10秒前
DireWolf完成签到 ,获得积分10
10秒前
炙热血茗完成签到,获得积分10
14秒前
whuhustwit完成签到,获得积分10
15秒前
NJY发布了新的文献求助10
15秒前
16秒前
江子骞完成签到 ,获得积分10
16秒前
快乐的睫毛完成签到 ,获得积分10
18秒前
curtisness应助炙热血茗采纳,获得10
19秒前
20秒前
万能图书馆应助17852573662采纳,获得10
20秒前
Cool完成签到,获得积分10
21秒前
嘉芮完成签到,获得积分10
22秒前
马麻薯完成签到,获得积分10
23秒前
sobergod完成签到,获得积分10
23秒前
LibingzZ完成签到,获得积分10
25秒前
不配.应助香烟小厨采纳,获得20
25秒前
再睡一夏发布了新的文献求助10
25秒前
JamesPei应助虚幻友瑶采纳,获得10
26秒前
Ooops完成签到,获得积分10
26秒前
hhh完成签到 ,获得积分20
26秒前
健壮雨兰完成签到,获得积分10
27秒前
打打应助zhh采纳,获得10
28秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137238
求助须知:如何正确求助?哪些是违规求助? 2788358
关于积分的说明 7785777
捐赠科研通 2444399
什么是DOI,文献DOI怎么找? 1299897
科研通“疑难数据库(出版商)”最低求助积分说明 625650
版权声明 601023