作者
Maarten Hulsmans,Maximilian J. Schloss,I‐Hsiu Lee,Aneesh Bapat,Yoshiko Iwamoto,Claudio Vinegoni,Alexandre Paccalet,Masahiro Yamazoe,Jana Grune,Steffen Pabel,Noor Momin,H Seung,Nina Kumowski,Fadi E. Pulous,Daniel M. Keller,C. Bening,Ursula Green,Jochen K. Lennerz,Richard N. Mitchell,Andrew Lewis,Barbara Casadei,Oriol Iborra‐Egea,Antoni Bayés‐Genís,Samuel Sossalla,Chin Siang Ong,Richard N. Pierson,Jon C. Aster,David Rohde,Gregory R. Wojtkiewicz,Ralph Weissleder,Filip K. Świrski,George Tellides,George Tolis,Serguei Melnitchouk,David J. Milan,Patrick T. Ellinor,Kamila Naxerova,Matthias Nahrendorf
摘要
Atrial fibrillation disrupts contraction of the atria, leading to stroke and heart failure. We deciphered how immune and stromal cells contribute to atrial fibrillation. Single-cell transcriptomes from human atria documented inflammatory monocyte and SPP1 + macrophage expansion in atrial fibrillation. Combining hypertension, obesity, and mitral valve regurgitation (HOMER) in mice elicited enlarged, fibrosed, and fibrillation-prone atria. Single-cell transcriptomes from HOMER mouse atria recapitulated cell composition and transcriptome changes observed in patients. Inhibiting monocyte migration reduced arrhythmia in Ccr2 −∕− HOMER mice. Cell-cell interaction analysis identified SPP1 as a pleiotropic signal that promotes atrial fibrillation through cross-talk with local immune and stromal cells. Deleting Spp1 reduced atrial fibrillation in HOMER mice. These results identify SPP1 + macrophages as targets for immunotherapy in atrial fibrillation.