Research on Flatness Measurement of Large-Size Parts Based on 3-D Machine Vision

平坦度(宇宙学) 轮缘 点云 计量系统 涡轮机 测量不确定度 计算机科学 工程类 控制理论(社会学) 机械工程 模拟 人工智能 数学 物理 统计 控制(管理) 宇宙学 量子力学 天文
作者
Suhua Xiao,Jian-Yi Wu,N.D. Lai,Ruihao Lin,Mingjuan Qiao,Wang Zhi-yong,Wenbin Luo,Yanrong Fu,Peng Liang,Peipei Zhou,Pujing Liu
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-12 被引量:2
标识
DOI:10.1109/tim.2023.3289530
摘要

Measuring geometric properties for large-sized parts is faced with various challenges. This study established a novel method for measuring the flatness of large-scale annular workpieces, with the flange of a wind turbine tower as an example. The proposed method is based on three-dimensional (3D) machine vision and precision motion control technology, aiming to address issues such as distorted measurements, long measurement times, and significant safety risks. The study primarily focused on the development of algorithms for measuring the flatness of large-sized annular workpieces through region-based measurement and vertical centering. The system employs a rotating arm equipped with a 3D vision sensor driven by a precision motion control system. A constant-speed laser line scans the surface of the large-sized flange to acquire precise point cloud data. The obtained point cloud data are then processed to determine the flatness of the flange surface. A verification test was conducted on a wind turbine tower flange with a diameter of 4.2 m to validate the functionality of the system. The results indicated that the proposed system enables stable and accurate measurement of flange flatness, and the measurement uncertainty was analyzed using the guide to the uncertainty in the measurement method, yielding an expanded uncertainty of 0.072 mm. The results indicated that the developed flatness measurement system can efficiently, accurately, and consistently measure the flatness of large annular flanges. This provides valuable insights for the geometric measurement of large annular parts in various fields such as wind power, engineering machinery, ships, and military industries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
MADKAI发布了新的文献求助10
刚刚
lin完成签到,获得积分20
1秒前
思源应助科研民工采纳,获得10
1秒前
忧郁凌波完成签到,获得积分10
1秒前
姜姜姜完成签到 ,获得积分10
2秒前
凶狠的绿兰完成签到,获得积分10
3秒前
多多少少忖测的情完成签到,获得积分10
3秒前
科研通AI5应助兴奋的宛白采纳,获得10
4秒前
5秒前
zhanlonglsj发布了新的文献求助10
5秒前
5秒前
芍药完成签到,获得积分10
5秒前
Yogita完成签到,获得积分10
6秒前
DoctorYan完成签到,获得积分10
6秒前
Adler完成签到,获得积分10
6秒前
7秒前
坐宝马吃地瓜完成签到 ,获得积分10
7秒前
SciGPT应助Strike采纳,获得10
7秒前
自强不息完成签到,获得积分10
7秒前
8秒前
czq发布了新的文献求助30
8秒前
望春风完成签到,获得积分10
8秒前
8秒前
huangJP完成签到,获得积分10
9秒前
情怀应助Tira采纳,获得10
9秒前
王阳洋完成签到,获得积分10
9秒前
9秒前
10秒前
通~发布了新的文献求助10
10秒前
李爱国应助非常可爱采纳,获得20
10秒前
10秒前
11秒前
阿敏发布了新的文献求助10
12秒前
JamesPei应助小憩采纳,获得10
12秒前
jkhjkhj发布了新的文献求助10
12秒前
风中香之发布了新的文献求助30
12秒前
忍冬完成签到,获得积分10
13秒前
Zhong发布了新的文献求助10
14秒前
胡图图关注了科研通微信公众号
14秒前
爱吃泡芙发布了新的文献求助20
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740