Evaluating machine learning predicted subsurface properties via seismic data reconstruction
地质学
计算机科学
地震学
人工智能
机器学习
作者
Tianming Zhao,Haibin Di,Aria Abubakar
出处
期刊:Geophysics [Society of Exploration Geophysicists] 日期:2024-07-21卷期号:: 1-46
标识
DOI:10.1190/geo2023-0124.1
摘要
In recent years, machine learning (ML) approaches have gained significant attention in seismic-based subsurface property estimation problems. However, because of the purely data-driven nature, it is challenging to evaluate the quality of the estimated properties in regions without ground truth data. In this article, we discuss evaluating the quality of ML predicted subsurface properties through ML-based seismic data reconstruction. We use a deep learning workflow to reconstruct the poststack seismic data, then use the misfit between the measured data and the reconstructed data as a proxy for the quality of ML predicted subsurface properties. We also use self-supervised learning to improve the model generalization when training the deep learning model for reconstruction. This proposed method is particularly valuable for subsurface properties without direct physical relation to seismic data. We provide both synthetic and field data examples to demonstrate the consistency of the proposed method.