Artificial intelligence/machine learning for neuroimaging to predict hemorrhagic transformation: Systematic review/meta‐analysis

医学 诊断优势比 神经影像学 接收机工作特性 荟萃分析 机器学习 人工智能 检查表 梅德林 纳入和排除标准 系统回顾 优势比 内科学 病理 精神科 计算机科学 认知心理学 替代医学 心理学 政治学 法学
作者
Richard Dagher,Burak Berksu Ozkara,Mert Karabacak,Samir A. Dagher,Elijah Isaac Rumbaut,Licia P. Luna,Vivek Yedavalli,Max Wintermark
出处
期刊:Journal of Neuroimaging [Wiley]
卷期号:34 (5): 505-514
标识
DOI:10.1111/jon.13223
摘要

Abstract Background and Purpose Early and reliable prediction of hemorrhagic transformation (HT) in patients with acute ischemic stroke (AIS) is crucial for treatment decisions and early intervention. The purpose of this study was to conduct a systematic review and meta‐analysis on the performance of artificial intelligence (AI) and machine learning (ML) models that utilize neuroimaging to predict HT. Methods A systematic search of PubMed, EMBASE, and Web of Science was conducted until February 19, 2024. Inclusion criteria were as follows: patients with AIS who received reperfusion therapy; AI/ML algorithm using imaging to predict HT; or presence of sufficient data on the predictive performance. Exclusion criteria were as follows: articles with less than 20 patients; articles lacking algorithms that operate solely on images; or articles not detailing the algorithm used. The quality of eligible studies was assessed using the Quality Assessment of Diagnostic Accuracy Studies‐2 and Checklist for Artificial Intelligence in Medical Imaging. Pooled sensitivity, specificity, and diagnostic odds ratio (DOR) were calculated using a random‐effects model, and a summary receiver operating characteristic curve was constructed using the Reitsma method. Results We identified six eligible studies, which included 1640 patients. Aside from an unclear risk of bias regarding flow and timing identified in two of the studies, all studies showed low risk of bias and applicability concerns in all categories. Pooled sensitivity, specificity, and DOR were .849, .878, and 45.598, respectively. Conclusion AI/ML models can reliably predict the occurrence of HT in AIS patients. More prospective studies are needed for subgroup analyses and higher clinical certainty and usefulness.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
隐形曼青应助阳光秋莲采纳,获得10
1秒前
共享精神应助syz采纳,获得30
1秒前
玖玖完成签到,获得积分10
1秒前
2秒前
可爱的函函应助清爽灰狼采纳,获得10
2秒前
2秒前
HLB完成签到,获得积分10
2秒前
orixero应助旺仔采纳,获得10
3秒前
3秒前
机灵亦旋完成签到,获得积分10
4秒前
4秒前
卷白菜发布了新的文献求助10
4秒前
果壳茉莉拌沙拉完成签到,获得积分10
4秒前
4秒前
4秒前
5秒前
无花果应助Li F采纳,获得10
5秒前
5秒前
Valrhona发布了新的文献求助10
6秒前
7秒前
霍三石完成签到,获得积分10
8秒前
从容芮应助机灵亦旋采纳,获得20
9秒前
那谁完成签到,获得积分10
9秒前
Ava应助mimi采纳,获得10
9秒前
頔頔哒哒发布了新的文献求助10
11秒前
haoguo发布了新的文献求助10
11秒前
11秒前
dzbb应助starrysky采纳,获得10
12秒前
可可可发布了新的文献求助10
13秒前
Li F完成签到,获得积分10
14秒前
cyrong应助桃酥酥采纳,获得10
14秒前
lch完成签到,获得积分20
14秒前
QQQQ发布了新的文献求助10
14秒前
14秒前
kento应助高大凌寒采纳,获得200
15秒前
华仔应助快乐的板凳采纳,获得10
15秒前
上官若男应助mamei采纳,获得30
15秒前
15秒前
苏卿应助加油鸭采纳,获得10
16秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3152625
求助须知:如何正确求助?哪些是违规求助? 2803842
关于积分的说明 7855937
捐赠科研通 2461519
什么是DOI,文献DOI怎么找? 1310346
科研通“疑难数据库(出版商)”最低求助积分说明 629199
版权声明 601782