残余物
计算机科学
图形
人工智能
特征(语言学)
模式识别(心理学)
卷积神经网络
融合
算法
理论计算机科学
语言学
哲学
作者
Fangzhou Xu,Weiyou Shi,Chengyan Lv,Yuan Sun,Shuai Guo,Chao Feng,Yang Zhang,Tzyy‐Ping Jung,Jiancai Leng
标识
DOI:10.1142/s0129065724500692
摘要
Stroke, an abrupt cerebrovascular ailment resulting in brain tissue damage, has prompted the adoption of motor imagery (MI)-based brain-computer interface (BCI) systems in stroke rehabilitation. However, analyzing electroencephalogram (EEG) signals from stroke patients poses challenges. To address the issues of low accuracy and efficiency in EEG classification, particularly involving MI, the study proposes a residual graph convolutional network (M-ResGCN) framework based on the modified
科研通智能强力驱动
Strongly Powered by AbleSci AI