亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Cnn-trans model: A parallel dual-branch network for fundus image classification

计算机科学 卷积神经网络 对偶(语法数字) 深度学习 串联(数学) 人工智能 眼底(子宫) 特征(语言学) 模式识别(心理学) 计算机视觉 眼科 数学 医学 哲学 艺术 文学类 组合数学 语言学
作者
Shuxian Liu,Wei Wang,Le Deng,Huan Xu
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:96: 106621-106621 被引量:1
标识
DOI:10.1016/j.bspc.2024.106621
摘要

The existence of fundus diseases not only endangers people's vision, but also brings serious economic burden to the society. Fundus images are an objective and standard basis for the diagnosis of fundus diseases. With the continuous advancement of computer science, deep learning methods dominated by convolutional neural networks (CNN) have been widely used in fundus image classification. However, the current CNN-based fundus image classification research still has a lot of room for improvement: CNN cannot effectively avoid the interference of repeated background information and has limited ability to model the whole world. In response to the above findings, this paper proposes the CNN-Trans model. The CNN-Trans model is a parallel dual-branch network, which is the two branches of CNN-LSTM and Vision Transform (ViT). The CNN-LSTM branch uses Xception after transfer learning. As the original feature extractor, LSTM is responsible for dealing with the gradient disappearance problem in neural network iterations before the classification head, and then introduces a new type of lightweight attention mechanism between Xception and LSTM: Coordinate Attention, so as to emphasize the key information related to classification and suppress the less useful repeated background information; while the self-attention mechanism in the ViT branch is not limited by local interactions, it can establish long-distance dependence on the target and extract global features. Finally, the concatenation (Concat) operation is used to fuse the features of the two branches. The local features extracted by the CNN-LSTM branch and the global features extracted by the ViT branch form complementary advantages. After feature fusion, more comprehensive image feature information is sent to the to the classification layer. Finally, after a large number of experimental tests and comparisons, the results show that: the CNN-Trans model achieved an accuracy of 80.68% on the fundus image classification task, and the CNN-Trans model has a classification that is comparable to the state-of-the-art methods. performance..
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
majer完成签到,获得积分10
58秒前
清秀的怀蕊完成签到 ,获得积分10
1分钟前
1分钟前
David发布了新的文献求助10
1分钟前
英姑应助科研通管家采纳,获得10
2分钟前
2分钟前
含糊的茹妖完成签到 ,获得积分10
3分钟前
许志强完成签到,获得积分20
4分钟前
妇产科医生完成签到 ,获得积分10
4分钟前
许志强发布了新的文献求助10
4分钟前
英姑应助oleskarabach采纳,获得10
4分钟前
小宋爱科研完成签到 ,获得积分10
4分钟前
螃蟹One完成签到 ,获得积分10
4分钟前
小白小王完成签到,获得积分10
6分钟前
6分钟前
这辈子瘦不了完成签到,获得积分10
7分钟前
7分钟前
tinyliiyong发布了新的文献求助10
7分钟前
8分钟前
8分钟前
tinyliiyong完成签到,获得积分10
8分钟前
ding应助tinyliiyong采纳,获得30
8分钟前
8分钟前
8分钟前
禾苗完成签到 ,获得积分10
9分钟前
9分钟前
10分钟前
10分钟前
asdfqaz完成签到,获得积分10
10分钟前
11分钟前
不担心发布了新的文献求助10
11分钟前
wanci应助不担心采纳,获得10
12分钟前
爆米花应助WANG采纳,获得10
12分钟前
魔幻诗兰完成签到,获得积分10
12分钟前
小强完成签到 ,获得积分10
13分钟前
David发布了新的文献求助10
13分钟前
14分钟前
jimmy_bytheway完成签到,获得积分0
15分钟前
科研通AI2S应助科研通管家采纳,获得10
16分钟前
17分钟前
高分求助中
Sustainability in Tides Chemistry 1500
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Threaded Harmony: A Sustainable Approach to Fashion 799
Livre et militantisme : La Cité éditeur 1958-1967 500
Retention of title in secured transactions law from a creditor's perspective: A comparative analysis of selected (non-)functional approaches 500
"Sixth plenary session of the Eighth Central Committee of the Communist Party of China" 400
Introduction to Modern Controls, with illustrations in MATLAB and Python 310
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3056622
求助须知:如何正确求助?哪些是违规求助? 2713071
关于积分的说明 7434576
捐赠科研通 2358176
什么是DOI,文献DOI怎么找? 1249304
科研通“疑难数据库(出版商)”最低求助积分说明 607015
版权声明 596227