Thermodynamic and Kinetic Behaviors of Electrolytes Mediated by Intermolecular Interactions Enabling High-Performance Lithium-Ion Batteries

溶剂化 电解质 溶剂 锂(药物) 分子间力 碳酸丙烯酯 溶剂效应 化学 物理化学 分子 有机化学 电极 医学 内分泌学
作者
Hongliang Xie,Haoran Cheng,Pushpendra Kumar,Yuqi Wang,Honghong Liang,Tao Cai,Fei Zhao,Z. Cao,Luigi Cavallo,Zheng Ma,Qian Li,Jun Ming
出处
期刊:ACS Nano [American Chemical Society]
卷期号:18 (33): 22503-22517 被引量:44
标识
DOI:10.1021/acsnano.4c07986
摘要

Electrolyte solvation chemistry regulated by lithium salts, solvents, and additives has garnered significant attention since it is the most effective strategy for designing high-performance electrolytes in lithium-ion batteries (LIBs). However, achieving a delicate balance is a persistent challenge, given that excessively strong or weak Li+-solvent coordination markedly undermines electrolyte properties, including thermodynamic redox stability and Li+-desolvation kinetics, limiting the practical applications. Herein, we elucidate the crucial influence of solvent-solvent interactions in modulating the Li+-solvation structure to enhance electrolyte thermodynamic and kinetic properties. As a paradigm, by combining strongly coordinated propylene carbonate (PC) with weakly coordinated cyclopentylmethyl ether (CPME), we identified intermolecular interactions between PC and CPME using 1H-1H correlation spectroscopy. Experimental and computational findings underscore the crucial role of solvent-solvent interactions in regulating Li+-solvent/anion interactions, which can enhance both the thermodynamic (i.e., antireduction capability) and kinetic (i.e., Li+-desolvation process) aspects of electrolytes. Additionally, we introduced an interfacial model to reveal the intricate relationship between solvent-solvent interactions, electrolyte properties, and electrode interfacial behaviors at a molecular scale. This study provides valuable insights into the critical impact of solvent-solvent interactions on electrolyte properties, which are pivotal for guiding future efforts in functionalized electrolyte engineering for metal-ion batteries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
不安念双完成签到,获得积分10
1秒前
明理的之云完成签到,获得积分10
1秒前
1秒前
锂离子发布了新的文献求助10
2秒前
2秒前
传奇3应助疯狂大脑壳采纳,获得10
2秒前
junhuihe发布了新的文献求助10
3秒前
liyang发布了新的文献求助10
3秒前
堂yt完成签到,获得积分10
4秒前
张小祎完成签到,获得积分10
4秒前
4秒前
小遇完成签到 ,获得积分10
4秒前
4秒前
aoc发布了新的文献求助10
4秒前
4秒前
5秒前
共享精神应助旺仔采纳,获得30
5秒前
超帅的南霜完成签到,获得积分20
5秒前
BioGO发布了新的文献求助10
5秒前
5秒前
5秒前
烟花应助Master_Ye采纳,获得10
6秒前
6秒前
6秒前
Chen完成签到,获得积分10
6秒前
sunshine完成签到,获得积分10
7秒前
7秒前
7秒前
调皮语雪完成签到 ,获得积分10
8秒前
seata发布了新的文献求助10
8秒前
Angora发布了新的文献求助10
8秒前
9秒前
月落无痕97完成签到 ,获得积分0
9秒前
NexusExplorer应助BioGO采纳,获得10
10秒前
科研通AI6应助Kar采纳,获得10
10秒前
10秒前
Quhang发布了新的文献求助10
10秒前
流萤发布了新的文献求助10
10秒前
李健的小迷弟应助ashley采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5647530
求助须知:如何正确求助?哪些是违规求助? 4773705
关于积分的说明 15039847
捐赠科研通 4806303
什么是DOI,文献DOI怎么找? 2570208
邀请新用户注册赠送积分活动 1527046
关于科研通互助平台的介绍 1486132