Predicting prognostic factors in kidney transplantation using a machine learning approach to enhance outcome predictions: a retrospective cohort study

医学 接收机工作特性 肾移植 机器学习 移植 队列 逻辑回归 人工智能 内科学 肿瘤科 计算机科学
作者
Jin-Myung Kim,HyoJe Jung,Hye Eun Kwon,Youngmin Ko,Joo Hee Jung,Hyunwook Kwon,Young Hoon Kim,Tae Joon Jun,Sang‐Hyun Hwang,Sung Shin
出处
期刊:International Journal of Surgery [Wolters Kluwer]
标识
DOI:10.1097/js9.0000000000002028
摘要

Background: Accurate forecasting of clinical outcomes after kidney transplantation is essential for improving patient care and increasing the success rates of transplants. Our study employs advanced machine learning (ML) algorithms to identify crucial prognostic indicators for kidney transplantation. By analyzing complex datasets with ML models, we aim to enhance prediction accuracy and provide valuable insights to support clinical decision-making. Materials and Methods: Analyzing data from 4077 KT patients (June 1990 - May 2015) at a single center, this research included 27 features encompassing recipient/donor traits and peri-transplant data. The dataset was divided into training (80%) and testing (20%) sets. Four ML models—eXtreme Gradient Boosting (XGBoost), Feedforward Neural Network, Logistic Regression, and Support Vector Machine—were trained on carefully selected features to predict the success of graft survival. Performance was assessed by precision, sensitivity, F1 score, Area Under the Receiver Operating Characteristic (AUROC), and Area Under the Precision-Recall Curve. Results: XGBoost emerged as the best model, with an AUROC of 0.828, identifying key survival predictors like T-cell flow crossmatch positivity, creatinine levels two years post-transplant and human leukocyte antigen mismatch. The study also examined the prognostic importance of histological features identified by the Banff criteria for renal biopsy, emphasizing the significance of intimal arteritis, interstitial inflammation, and chronic glomerulopathy. Conclusion: The study developed ML models that pinpoint clinical factors crucial for KT graft survival, aiding clinicians in making informed post-transplant care decisions. Incorporating these findings with the Banff classification could improve renal pathology diagnosis and treatment, offering a data-driven approach to prioritizing pathology scores.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
璐宝完成签到,获得积分10
刚刚
刚刚
七宝完成签到 ,获得积分10
2秒前
海德堡发布了新的文献求助10
2秒前
5秒前
Jonathan发布了新的文献求助10
5秒前
绿藻发布了新的文献求助10
6秒前
麦乐迪应助许子健采纳,获得10
7秒前
7秒前
利多卡因完成签到,获得积分10
8秒前
10秒前
Lifetour发布了新的文献求助10
11秒前
11秒前
小贤鱼关注了科研通微信公众号
13秒前
安详映阳完成签到 ,获得积分10
14秒前
科研混子完成签到,获得积分10
14秒前
xiangwangxx发布了新的文献求助10
15秒前
领导范儿应助clarklkq采纳,获得10
16秒前
张雷应助牧鱼采纳,获得10
16秒前
鲤鱼幼晴给sssss的求助进行了留言
17秒前
健壮的怜烟完成签到,获得积分10
17秒前
彭于晏应助彩色的严青采纳,获得10
18秒前
19秒前
20秒前
gudujian870928完成签到,获得积分10
20秒前
20秒前
时尚的归尘完成签到,获得积分10
21秒前
一手灵魂完成签到,获得积分10
21秒前
我d温柔乡完成签到,获得积分10
22秒前
老实巴交完成签到,获得积分10
22秒前
23秒前
23秒前
23秒前
jam完成签到,获得积分10
23秒前
一只羊发布了新的文献求助10
25秒前
26秒前
叶y发布了新的文献求助10
27秒前
uui发布了新的文献求助10
30秒前
xiangwangxx完成签到,获得积分20
30秒前
斗牛的番茄完成签到 ,获得积分10
30秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966448
求助须知:如何正确求助?哪些是违规求助? 3511902
关于积分的说明 11160537
捐赠科研通 3246634
什么是DOI,文献DOI怎么找? 1793425
邀请新用户注册赠送积分活动 874451
科研通“疑难数据库(出版商)”最低求助积分说明 804403