Predicting prognostic factors in kidney transplantation using a machine learning approach to enhance outcome predictions: a retrospective cohort study

医学 接收机工作特性 肾移植 机器学习 移植 队列 逻辑回归 人工智能 内科学 肿瘤科 计算机科学
作者
Jin-Myung Kim,HyoJe Jung,Hye Eun Kwon,Youngmin Ko,Joo Hee Jung,Hyunwook Kwon,Young Hoon Kim,Tae Joon Jun,Sang‐Hyun Hwang,Sung Shin
出处
期刊:International Journal of Surgery [Elsevier]
标识
DOI:10.1097/js9.0000000000002028
摘要

Background: Accurate forecasting of clinical outcomes after kidney transplantation is essential for improving patient care and increasing the success rates of transplants. Our study employs advanced machine learning (ML) algorithms to identify crucial prognostic indicators for kidney transplantation. By analyzing complex datasets with ML models, we aim to enhance prediction accuracy and provide valuable insights to support clinical decision-making. Materials and Methods: Analyzing data from 4077 KT patients (June 1990 - May 2015) at a single center, this research included 27 features encompassing recipient/donor traits and peri-transplant data. The dataset was divided into training (80%) and testing (20%) sets. Four ML models—eXtreme Gradient Boosting (XGBoost), Feedforward Neural Network, Logistic Regression, and Support Vector Machine—were trained on carefully selected features to predict the success of graft survival. Performance was assessed by precision, sensitivity, F1 score, Area Under the Receiver Operating Characteristic (AUROC), and Area Under the Precision-Recall Curve. Results: XGBoost emerged as the best model, with an AUROC of 0.828, identifying key survival predictors like T-cell flow crossmatch positivity, creatinine levels two years post-transplant and human leukocyte antigen mismatch. The study also examined the prognostic importance of histological features identified by the Banff criteria for renal biopsy, emphasizing the significance of intimal arteritis, interstitial inflammation, and chronic glomerulopathy. Conclusion: The study developed ML models that pinpoint clinical factors crucial for KT graft survival, aiding clinicians in making informed post-transplant care decisions. Incorporating these findings with the Banff classification could improve renal pathology diagnosis and treatment, offering a data-driven approach to prioritizing pathology scores.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大马猴发布了新的文献求助10
1秒前
1秒前
冷傲的夜香完成签到 ,获得积分10
2秒前
黄雪峰发布了新的文献求助10
3秒前
3秒前
八号向日葵完成签到 ,获得积分10
5秒前
5秒前
7秒前
思源应助orange9采纳,获得10
9秒前
wang发布了新的文献求助10
12秒前
Ning应助标致的苑睐采纳,获得10
13秒前
123完成签到,获得积分10
13秒前
CodeCraft应助研友_LX7lK8采纳,获得10
13秒前
mito应助科研通管家采纳,获得10
14秒前
脑洞疼应助科研通管家采纳,获得10
14秒前
科研通AI2S应助科研通管家采纳,获得10
14秒前
英姑应助科研通管家采纳,获得10
14秒前
14秒前
正在获取昵称中...完成签到,获得积分10
16秒前
周凡淇发布了新的文献求助10
17秒前
我是老大应助霸气的梦露采纳,获得10
18秒前
18秒前
水凝胶发布了新的文献求助10
18秒前
19秒前
完美世界应助赵鑫雅采纳,获得10
20秒前
小博小博发布了新的文献求助20
20秒前
21秒前
21秒前
21秒前
wang完成签到,获得积分10
22秒前
22秒前
22秒前
爆米花应助睡懒觉的猫采纳,获得10
23秒前
orange9发布了新的文献求助10
24秒前
殇春秋应助陶醉的世立采纳,获得10
24秒前
25秒前
Renko完成签到,获得积分10
25秒前
26秒前
想吃栗子发布了新的文献求助10
27秒前
大众脸发布了新的文献求助10
27秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Внешняя политика КНР: о сущности внешнеполитического курса современного китайского руководства 500
Revolution und Konterrevolution in China [by A. Losowsky] 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3122926
求助须知:如何正确求助?哪些是违规求助? 2773264
关于积分的说明 7717277
捐赠科研通 2428810
什么是DOI,文献DOI怎么找? 1290047
科研通“疑难数据库(出版商)”最低求助积分说明 621693
版权声明 600203