Adaptive Spectrum Amplitude Modulation Method for Rolling Bearing Fault Frequency Determination

计算机科学 解调 信号(编程语言) 小波 小波包分解 断层(地质) 滚动轴承 自编码 模式识别(心理学) 频带 频率调制 人工智能 振动 声学 小波变换 频道(广播) 物理 电信 人工神经网络 带宽(计算) 地震学 程序设计语言 地质学
作者
昭宇 涂,Zeyu Luo,Menghui Li,Jun Wang,Zhi-Xin Yang,Xianbo Wang
出处
期刊:Measurement Science and Technology [IOP Publishing]
标识
DOI:10.1088/1361-6501/ad6786
摘要

Abstract Signal preprocessing and feature extraction are decisive factors in determining the frequency of bearing faults. The presence of noise interference in the status signal of rolling bearings often hampers accurate fault detection. Although there are various methods for preprocessing vibration signals in rolling bearings, they need further improvement in terms of enhancing fault feature expression and localizing fault frequency bands. This limitation significantly hinders the accuracy of fault frequency determination. In order to enhance the representation of fault information on the frequency spectrum, this study proposes a combined approach that incorporates sparse stacked autoencoder (SSAE), wavelet packet decomposition (WPD), and adaptive spectrum amplitude modulation (ASAM). The resulting method is referred to as SSAE-WPD-ASAM. Firstly, the bearing vibration signal is decomposed by wavelet packet according to the scale and frequency band of the signal. On this basis, the signal reconstruction is realized based on the wavelet packet coefficient and energy distribution in different frequency bands. Secondly, for the whole life cycle signal, the reconstructed signal is self-encoded by sparse stacked autoencoder to achieve dimensionality reduction of the reconstructed signal. Then, the spare reconstructed signal is subjected to adaptive spectrum amplitude modulation (ASAM). Finally, through envelope demodulation, peak detection of fault frequency and empirical fault frequency comparison, the specific fault types of rolling bearings are determined. The proposed method is verified by theoretical simulation and three groups of practical experiments. The results show that the proposed method has a significant improvement in diagnostic efficiency and accuracy compared with traditional diagnostic methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一护城完成签到 ,获得积分10
1秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
星辰大海应助科研通管家采纳,获得10
2秒前
香蕉觅云应助科研通管家采纳,获得10
2秒前
领导范儿应助科研通管家采纳,获得10
2秒前
cocolu应助科研通管家采纳,获得10
2秒前
cocolu应助科研通管家采纳,获得10
2秒前
Owen应助科研通管家采纳,获得10
2秒前
2秒前
cocolu应助科研通管家采纳,获得10
2秒前
大个应助科研通管家采纳,获得10
2秒前
香蕉觅云应助科研通管家采纳,获得10
2秒前
领导范儿应助科研通管家采纳,获得10
2秒前
香蕉觅云应助lsl采纳,获得30
3秒前
斯文败类应助科研通管家采纳,获得10
3秒前
小二郎应助科研通管家采纳,获得10
3秒前
maox1aoxin应助科研通管家采纳,获得30
3秒前
3秒前
鹤鹤发布了新的文献求助10
3秒前
3秒前
完美世界应助科研通管家采纳,获得10
3秒前
研友_VZG7GZ应助科研通管家采纳,获得10
3秒前
NexusExplorer应助科研通管家采纳,获得10
3秒前
3秒前
cocolu应助科研通管家采纳,获得10
3秒前
欢呼洋葱应助Whitney采纳,获得10
3秒前
4秒前
4秒前
esyncoms完成签到,获得积分10
5秒前
彭于晏应助风思雅采纳,获得10
5秒前
小星星完成签到,获得积分10
7秒前
桐桐应助pyt采纳,获得10
7秒前
hwy发布了新的文献求助10
7秒前
ppg123应助鹤鹤采纳,获得80
9秒前
洛洛发布了新的文献求助10
10秒前
柒_l发布了新的文献求助10
10秒前
孔小白完成签到,获得积分10
12秒前
Hayat驳回了小黑应助
13秒前
Shuo Yang发布了新的文献求助30
13秒前
11完成签到,获得积分10
13秒前
高分求助中
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3463136
求助须知:如何正确求助?哪些是违规求助? 3056553
关于积分的说明 9052821
捐赠科研通 2746441
什么是DOI,文献DOI怎么找? 1506928
科研通“疑难数据库(出版商)”最低求助积分说明 696226
邀请新用户注册赠送积分活动 695808