Towards laryngeal cancer diagnosis using Dandelion Optimizer Algorithm with ensemble learning on biomedical throat region images

人工智能 计算机科学 医学诊断 感知器 卷积神经网络 模式识别(心理学) 集成学习 深度学习 特征提取 人工神经网络 极限学习机 喉肿瘤 机器学习 特征(语言学) 算法 癌症 病理 医学 语言学 哲学 内科学
作者
Sarah A. Alzakari,Mashael Maashi,Saad Alahmari,Munya A. Arasi,Abeer A. K. Alharbi,Ahmed Sayed
出处
期刊:Scientific Reports [Springer Nature]
卷期号:14 (1)
标识
DOI:10.1038/s41598-024-70525-0
摘要

Laryngeal cancer exhibits a notable global health burden, with later-stage detection contributing to a low mortality rate. Laryngeal cancer diagnosis on throat region images is a pivotal application of computer vision (CV) and medical image diagnoses in the medical sector. It includes detecting and analysing abnormal or cancerous tissue from the larynx, an integral part of the vocal and respiratory systems. The computer-aided system makes use of artificial intelligence (AI) through deep learning (DL) and machine learning (ML) models, including convolution neural networks (CNN), for automated disease diagnoses and detection. Various DL and ML approaches are executed to categorize the extraction feature as healthy and cancerous tissues. This article introduces an automated Laryngeal Cancer Diagnosis using the Dandelion Optimizer Algorithm with Ensemble Learning (LCD-DOAEL) method on Biomedical Throat Region Image. The LCD-DOAEL method aims to investigate the images of the throat region for the presence of laryngeal cancer. In the LCD-DOAEL method, the Gaussian filtering (GF) approach is applied to eliminate the noise in the biomedical images. Besides, the complex and intrinsic feature patterns can be extracted by the MobileNetv2 model. Meanwhile, the DOA model carries out the hyperparameter selection of MobileNetV2 architecture. Finally, the ensemble of three classifiers such as bidirectional long short-term memory (BiLSTM), regularized extreme learning machine (ELM), and backpropagation neural network (BPNN) models, are utilized for the classification process. A comprehensive set of simulations is conducted on the biomedical image dataset to highlight the efficient performance of the LCD-DOAEL technique. The comparison analysis of the LCD-DOAEL method exhibited a superior accuracy outcome of 97.54% over other existing techniques.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
科研通AI5应助呆萌的元枫采纳,获得30
1秒前
1秒前
gzsy发布了新的文献求助10
1秒前
3秒前
5秒前
5秒前
哄不好的南完成签到,获得积分10
5秒前
makus完成签到,获得积分10
5秒前
西西歪完成签到,获得积分10
7秒前
7秒前
深情安青应助BONBON采纳,获得10
7秒前
小马完成签到,获得积分10
8秒前
8秒前
细腻沅发布了新的文献求助10
10秒前
火羽白然完成签到 ,获得积分10
10秒前
冰西瓜完成签到 ,获得积分10
11秒前
季忆发布了新的文献求助10
11秒前
11秒前
cc发布了新的文献求助10
12秒前
Hello应助糊涂的小伙采纳,获得10
12秒前
甜甜的冷霜完成签到,获得积分10
12秒前
hkxfg发布了新的文献求助10
13秒前
谭谨川完成签到,获得积分10
13秒前
李爱国应助云中渊采纳,获得10
14秒前
14秒前
LT发布了新的文献求助10
15秒前
15秒前
高兴藏花发布了新的文献求助10
15秒前
17秒前
Allen完成签到,获得积分10
18秒前
18秒前
楪i完成签到,获得积分10
18秒前
值得完成签到,获得积分10
20秒前
20秒前
远山完成签到,获得积分10
21秒前
星星发布了新的文献求助10
21秒前
nanhe698发布了新的文献求助20
21秒前
阳光无声完成签到,获得积分10
21秒前
金色年华发布了新的文献求助10
21秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808