吸附
氮气
多孔性
碳纤维
化学工程
活性炭
环境化学
化学
材料科学
有机化学
复合材料
复合数
工程类
作者
Zhiang Hou,Huachun Lan,Xiaoqiang An,Ruijuan Liu,Lan Yang,Lie Liu,Huijuan Liu,Jiuhui Qu
标识
DOI:10.1016/j.cej.2024.155055
摘要
Hierarchical porous carbon presents great application potentials for water purification, but its structure–property relationship during the adsorption removal of antibiotic micropollutants remains unclear due to the complex interactions between them. Herein, we demonstrate a nitrogen doping strategy to simultaneously modulate the pore structure and affinity sites of hierarchical porous carbons. By fitting the pore structure of nitrogen-doped hierarchical porous carbon with typical antibiotics, we improve the initial adsorption rate of carbonaceous adsorbents by orders of magnitude. Experimental characterizations and theoretical calculations reveal the formation of electron-deficient/rich centers in the sp2 hybridization plane of carbon caused by nitrogen doping, significantly strengthening the π-π interaction between the adsorbents and antibiotics, with 7.28-times and 2.2-times higher equilibrium adsorption capacity under the optimal conditions compared to the pristine carbon and commercial activated carbon, respectively. A versatile apparatus is elaborately designed for water purification by combining high-efficiency adsorption and microfiltration, realizing nearly 100% and over 92% removal of micropollutants from tap water and real pharmaceutical wastewater, respectively via single-pass treatment. This research provides a solution for the high-efficiency treatment of micropollutants by using hierarchical porous carbon with modulated pore structure and interfacial affinity.
科研通智能强力驱动
Strongly Powered by AbleSci AI