Deep learning illuminates spin and lattice interaction in magnetic materials

凝聚态物理 格子(音乐) 材料科学 物理 声学
作者
Teng Yang,Zefeng Cai,Zhengtao Huang,Wenlong Tang,Ruosong Shi,A. Godfrey,Hanxing Liu,Yuan‐Hua Lin,Ce‐Wen Nan,Meng Ye,LinFeng Zhang,Ke Wang,Han Wang,Ben Xu
出处
期刊:Physical review [American Physical Society]
卷期号:110 (6) 被引量:2
标识
DOI:10.1103/physrevb.110.064427
摘要

Atomistic simulations hold significant value in clarifying crucial phenomena such as phase transitions and energy transport in materials science. Their success stems from the presence of potential energy functions capable of accurately depicting the relationship between system energy and lattice changes. In magnetic materials, two atomic scale degrees of freedom come into play: the lattice and the spin. However, accurately tracing the simultaneous evolution of both lattice and spin in magnetic materials at an atomic scale is a substantial challenge. This is largely due to the complexity involved in depicting the interaction energy precisely, and its influence on lattice and spin-driving forces, such as atomic forces and magnetic torques, which continues to be a daunting task in computational science. Addressing this deficit, we present DeepSPIN, a versatile approach that generates high-precision predictive models of energy, atomic forces, and magnetic torques in magnetic systems. This is achieved by integrating first-principles calculations of magnetic excited states with deep learning techniques via active learning. We thoroughly explore the methodology, accuracy, and scalability of our proposed model in this paper. Our technique adeptly connects first-principles computations and atomic-scale simulations of magnetic materials. This synergy presents opportunities to utilize these calculations in devising and tackling theoretical and practical obstacles concerning magnetic materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
共享精神应助知识探索家采纳,获得10
1秒前
6秒前
fffzy完成签到,获得积分10
7秒前
8秒前
11关注了科研通微信公众号
8秒前
yzz完成签到,获得积分20
8秒前
savica完成签到,获得积分10
10秒前
葛稀完成签到,获得积分10
11秒前
基金中中中完成签到,获得积分10
11秒前
mc应助王旺碎冰冰采纳,获得10
11秒前
11秒前
13秒前
下雨的颜色完成签到,获得积分10
13秒前
14秒前
我爱吃水果完成签到,获得积分10
14秒前
晶生完成签到,获得积分10
15秒前
桐桐应助早点睡采纳,获得10
16秒前
Hello应助cai采纳,获得10
16秒前
water应助晚霞常有遗憾采纳,获得10
16秒前
张春月完成签到,获得积分10
17秒前
Ccccn完成签到 ,获得积分10
17秒前
domkps完成签到 ,获得积分10
17秒前
小俞发布了新的文献求助10
18秒前
zyx完成签到,获得积分10
19秒前
aaa关闭了aaa文献求助
19秒前
wanci应助我爱吃水果采纳,获得10
19秒前
19秒前
鳗鱼紫萱完成签到,获得积分10
20秒前
秋秋完成签到 ,获得积分10
20秒前
123完成签到,获得积分10
20秒前
qiqi完成签到,获得积分10
21秒前
王昭完成签到,获得积分10
23秒前
24秒前
郝宇完成签到,获得积分10
25秒前
开心苠发布了新的文献求助20
25秒前
所所应助科研通管家采纳,获得10
25秒前
CodeCraft应助科研通管家采纳,获得10
26秒前
淡淡的豁应助科研通管家采纳,获得30
26秒前
yznfly应助科研通管家采纳,获得30
26秒前
Ava应助科研通管家采纳,获得10
26秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965864
求助须知:如何正确求助?哪些是违规求助? 3511176
关于积分的说明 11156785
捐赠科研通 3245809
什么是DOI,文献DOI怎么找? 1793118
邀请新用户注册赠送积分活动 874230
科研通“疑难数据库(出版商)”最低求助积分说明 804278