Deep learning illuminates spin and lattice interaction in magnetic materials

凝聚态物理 格子(音乐) 材料科学 物理 声学
作者
Teng Yang,Zefeng Cai,Zhengtao Huang,Wenlong Tang,Ruosong Shi,A. Godfrey,Hanxing Liu,Yuan‐Hua Lin,Ce‐Wen Nan,Meng Ye,LinFeng Zhang,Ke Wang,Han Wang,Ben Xu
出处
期刊:Physical review 卷期号:110 (6)
标识
DOI:10.1103/physrevb.110.064427
摘要

Atomistic simulations hold significant value in clarifying crucial phenomena such as phase transitions and energy transport in materials science. Their success stems from the presence of potential energy functions capable of accurately depicting the relationship between system energy and lattice changes. In magnetic materials, two atomic scale degrees of freedom come into play: the lattice and the spin. However, accurately tracing the simultaneous evolution of both lattice and spin in magnetic materials at an atomic scale is a substantial challenge. This is largely due to the complexity involved in depicting the interaction energy precisely, and its influence on lattice and spin-driving forces, such as atomic forces and magnetic torques, which continues to be a daunting task in computational science. Addressing this deficit, we present DeepSPIN, a versatile approach that generates high-precision predictive models of energy, atomic forces, and magnetic torques in magnetic systems. This is achieved by integrating first-principles calculations of magnetic excited states with deep learning techniques via active learning. We thoroughly explore the methodology, accuracy, and scalability of our proposed model in this paper. Our technique adeptly connects first-principles computations and atomic-scale simulations of magnetic materials. This synergy presents opportunities to utilize these calculations in devising and tackling theoretical and practical obstacles concerning magnetic materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
Ava应助阿萨德采纳,获得10
1秒前
流星发布了新的文献求助10
2秒前
2秒前
2秒前
Harry完成签到,获得积分10
2秒前
2秒前
yy44发布了新的文献求助30
3秒前
wanghua发布了新的文献求助10
4秒前
小糖完成签到 ,获得积分10
4秒前
虫二队长完成签到,获得积分10
6秒前
上善若水发布了新的文献求助20
6秒前
6秒前
6秒前
汉堡包应助xx采纳,获得10
7秒前
7秒前
种桃老总发布了新的文献求助10
7秒前
man完成签到,获得积分10
8秒前
8秒前
无花果应助谈笑采纳,获得30
8秒前
蟹xie发布了新的文献求助10
8秒前
9秒前
muyingleng应助Cindy采纳,获得10
9秒前
zhuzhu发布了新的文献求助20
11秒前
phillip521125发布了新的文献求助30
12秒前
wei发布了新的文献求助10
12秒前
ww发布了新的文献求助10
12秒前
Kizi2021发布了新的文献求助10
14秒前
jianyu完成签到,获得积分20
14秒前
15秒前
在水一方应助活泼小霜采纳,获得10
19秒前
20秒前
若枫发布了新的文献求助10
20秒前
vv123456ha完成签到,获得积分10
21秒前
科目三应助yuyu采纳,获得10
21秒前
derrickZ完成签到 ,获得积分10
21秒前
23秒前
23秒前
23秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1200
BIOLOGY OF NON-CHORDATES 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
Green building development for a sustainable environment with artificial intelligence technology 500
Zeitschrift für Orient-Archäologie 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3351623
求助须知:如何正确求助?哪些是违规求助? 2977111
关于积分的说明 8677728
捐赠科研通 2658157
什么是DOI,文献DOI怎么找? 1455504
科研通“疑难数据库(出版商)”最低求助积分说明 673959
邀请新用户注册赠送积分活动 664484