Deep learning illuminates spin and lattice interaction in magnetic materials

凝聚态物理 格子(音乐) 材料科学 物理 声学
作者
Teng Yang,Zefeng Cai,Zhengtao Huang,Wenlong Tang,Ruosong Shi,A. Godfrey,Hanxing Liu,Yuan‐Hua Lin,Ce‐Wen Nan,Meng Ye,LinFeng Zhang,Ke Wang,Han Wang,Ben Xu
出处
期刊:Physical review [American Physical Society]
卷期号:110 (6) 被引量:2
标识
DOI:10.1103/physrevb.110.064427
摘要

Atomistic simulations hold significant value in clarifying crucial phenomena such as phase transitions and energy transport in materials science. Their success stems from the presence of potential energy functions capable of accurately depicting the relationship between system energy and lattice changes. In magnetic materials, two atomic scale degrees of freedom come into play: the lattice and the spin. However, accurately tracing the simultaneous evolution of both lattice and spin in magnetic materials at an atomic scale is a substantial challenge. This is largely due to the complexity involved in depicting the interaction energy precisely, and its influence on lattice and spin-driving forces, such as atomic forces and magnetic torques, which continues to be a daunting task in computational science. Addressing this deficit, we present DeepSPIN, a versatile approach that generates high-precision predictive models of energy, atomic forces, and magnetic torques in magnetic systems. This is achieved by integrating first-principles calculations of magnetic excited states with deep learning techniques via active learning. We thoroughly explore the methodology, accuracy, and scalability of our proposed model in this paper. Our technique adeptly connects first-principles computations and atomic-scale simulations of magnetic materials. This synergy presents opportunities to utilize these calculations in devising and tackling theoretical and practical obstacles concerning magnetic materials.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
15完成签到,获得积分10
刚刚
图图驳回了Thien应助
1秒前
1秒前
1秒前
时衍完成签到,获得积分10
3秒前
上官若男应助lurongjun采纳,获得10
3秒前
共享精神应助tong采纳,获得10
3秒前
3秒前
lijunhao发布了新的文献求助10
3秒前
3秒前
lijshu发布了新的文献求助50
4秒前
4秒前
科目三应助Maestro_S采纳,获得10
5秒前
ODD完成签到,获得积分20
6秒前
6秒前
肖鹏完成签到,获得积分20
6秒前
Namj发布了新的文献求助10
7秒前
木头完成签到,获得积分10
8秒前
9秒前
9秒前
yongjiang应助熊猫小肿采纳,获得10
9秒前
洋洋完成签到,获得积分10
9秒前
何香稳发布了新的文献求助10
9秒前
10秒前
HightLight发布了新的文献求助10
10秒前
炙热尔烟发布了新的文献求助10
10秒前
11秒前
11秒前
copyj发布了新的文献求助10
11秒前
11秒前
13秒前
lurongjun发布了新的文献求助10
13秒前
Janisa发布了新的文献求助10
13秒前
14秒前
小涛涛发布了新的文献求助10
15秒前
丸橙完成签到,获得积分10
15秒前
weixiao发布了新的文献求助10
16秒前
16秒前
量子星尘发布了新的文献求助10
16秒前
丸橙发布了新的文献求助10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Linear and Nonlinear Functional Analysis with Applications, Second Edition 388
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5577556
求助须知:如何正确求助?哪些是违规求助? 4662649
关于积分的说明 14742832
捐赠科研通 4603346
什么是DOI,文献DOI怎么找? 2526283
邀请新用户注册赠送积分活动 1496084
关于科研通互助平台的介绍 1465546