Deep learning illuminates spin and lattice interaction in magnetic materials

凝聚态物理 格子(音乐) 材料科学 物理 声学
作者
Teng Yang,Zefeng Cai,Zhengtao Huang,Wenlong Tang,Ruosong Shi,A. Godfrey,Hanxing Liu,Yuan‐Hua Lin,Ce‐Wen Nan,Meng Ye,LinFeng Zhang,Ke Wang,Han Wang,Ben Xu
出处
期刊:Physical review [American Physical Society]
卷期号:110 (6) 被引量:2
标识
DOI:10.1103/physrevb.110.064427
摘要

Atomistic simulations hold significant value in clarifying crucial phenomena such as phase transitions and energy transport in materials science. Their success stems from the presence of potential energy functions capable of accurately depicting the relationship between system energy and lattice changes. In magnetic materials, two atomic scale degrees of freedom come into play: the lattice and the spin. However, accurately tracing the simultaneous evolution of both lattice and spin in magnetic materials at an atomic scale is a substantial challenge. This is largely due to the complexity involved in depicting the interaction energy precisely, and its influence on lattice and spin-driving forces, such as atomic forces and magnetic torques, which continues to be a daunting task in computational science. Addressing this deficit, we present DeepSPIN, a versatile approach that generates high-precision predictive models of energy, atomic forces, and magnetic torques in magnetic systems. This is achieved by integrating first-principles calculations of magnetic excited states with deep learning techniques via active learning. We thoroughly explore the methodology, accuracy, and scalability of our proposed model in this paper. Our technique adeptly connects first-principles computations and atomic-scale simulations of magnetic materials. This synergy presents opportunities to utilize these calculations in devising and tackling theoretical and practical obstacles concerning magnetic materials.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
syvshc应助人类不宜搞科研采纳,获得10
刚刚
刚刚
shirley完成签到,获得积分10
1秒前
YY再摆烂发布了新的文献求助10
1秒前
Hello应助自信彩虹采纳,获得10
1秒前
Zwj完成签到 ,获得积分10
2秒前
stresm完成签到,获得积分10
3秒前
李爱国应助倚楼听风雨采纳,获得10
3秒前
3秒前
CNS之神完成签到 ,获得积分10
3秒前
nature榜上关注了科研通微信公众号
4秒前
元谷雪发布了新的文献求助10
4秒前
无恙发布了新的文献求助10
4秒前
5秒前
昔颜完成签到,获得积分10
5秒前
5秒前
田様应助Mt采纳,获得10
7秒前
LUO完成签到,获得积分10
8秒前
8秒前
8秒前
8秒前
8秒前
量子星尘发布了新的文献求助10
10秒前
问夏发布了新的文献求助10
10秒前
Zyw完成签到 ,获得积分10
10秒前
11秒前
乌贼完成签到 ,获得积分10
11秒前
陆驳发布了新的文献求助10
11秒前
暖风sunny完成签到,获得积分10
12秒前
高兴的百褶裙完成签到,获得积分10
12秒前
SciGPT应助无wu采纳,获得10
13秒前
萧萧完成签到,获得积分0
13秒前
14秒前
14秒前
15秒前
深情安青应助机智跳跳糖采纳,获得10
15秒前
LCC发布了新的文献求助10
15秒前
hhllhh发布了新的文献求助10
16秒前
16秒前
16秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5695307
求助须知:如何正确求助?哪些是违规求助? 5101268
关于积分的说明 15215811
捐赠科研通 4851665
什么是DOI,文献DOI怎么找? 2602640
邀请新用户注册赠送积分活动 1554296
关于科研通互助平台的介绍 1512277