Typhoon Trajectory Prediction by Three CNN+ Deep-Learning Approaches

台风 弹道 深度学习 人工智能 计算机科学 气象学 地理 物理 天文
作者
Gang Lin,Yanchun Liang,Adriano Tavares,Carlos Lima,Dong Xia
出处
期刊:Electronics [MDPI AG]
卷期号:13 (19): 3851-3851
标识
DOI:10.3390/electronics13193851
摘要

The accuracy in predicting the typhoon track can be key to minimizing their frequent disastrous effects. This article aims to study the accuracy of typhoon trajectory prediction obtained by combining several algorithms based on current deep-learning techniques. The combination of a Convolutional Neural Network with Long Short-Term Memory (CNN+LSTM), Patch Time-Series Transformer (CNN+PatchTST) and Transformer (CNN+Transformer) were the models chosen for this work. These algorithms were tested on the best typhoon track data from the China Meteorological Administration (CMA), ERA5 data from the European Centre for Medium-Range Weather Forecasts (ECMWF), and structured meteorological data from the Zhuhai Meteorological Bureau (ZMB) as an extension of existing studies that were based only on public data sources. The experimental results were obtained by testing two complete years of data (2021 and 2022), as an alternative to the frequent selection of a small number of typhoons in several years. Using the R-squared metric, results were obtained as significant as CNN+LSTM (0.991), CNN+PatchTST (0.989) and CNN+Transformer (0.969). CNN+LSTM without ZMB data can only obtain 0.987, i.e., 0.004 less than 0.991. Overall, our findings indicate that appropriately augmenting data near land and ocean boundaries around the coast improves typhoon track prediction.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
lvhuiqi发布了新的文献求助10
1秒前
所所应助shanjianjie采纳,获得10
1秒前
xc完成签到,获得积分10
1秒前
3秒前
风趣雪一完成签到,获得积分10
3秒前
华仔应助乖宝采纳,获得10
3秒前
感动的雁枫完成签到,获得积分10
4秒前
dhsnh发布了新的文献求助10
4秒前
4秒前
丘比特应助直率雪曼采纳,获得10
6秒前
科研小菜完成签到,获得积分10
7秒前
7秒前
天天快乐应助耶布达采纳,获得10
7秒前
科研通AI6应助灵泽采纳,获得10
8秒前
lx完成签到,获得积分10
9秒前
留白留白发布了新的文献求助10
9秒前
我是老大应助非言墨语采纳,获得10
9秒前
典雅的丹寒完成签到,获得积分10
9秒前
10秒前
11秒前
汉堡包应助酆天菱采纳,获得10
11秒前
慕青应助lvhuiqi采纳,获得10
13秒前
zhao完成签到,获得积分10
13秒前
小陈完成签到,获得积分10
14秒前
14秒前
shanjianjie完成签到,获得积分10
15秒前
samantha发布了新的文献求助20
15秒前
科研通AI6应助火星上如花采纳,获得10
15秒前
科研通AI6应助火星上如花采纳,获得10
15秒前
一飞冲天的刺猬完成签到,获得积分10
15秒前
萝卜完成签到,获得积分10
16秒前
虫二发布了新的文献求助10
16秒前
大模型应助周周采纳,获得20
17秒前
研友_VZG7GZ应助z落水无痕采纳,获得10
18秒前
18秒前
乖宝发布了新的文献求助10
19秒前
江波发布了新的文献求助10
20秒前
126完成签到,获得积分10
20秒前
lvhuiqi完成签到,获得积分10
20秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Reliability Monitoring Program 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5339665
求助须知:如何正确求助?哪些是违规求助? 4476410
关于积分的说明 13931491
捐赠科研通 4371956
什么是DOI,文献DOI怎么找? 2402218
邀请新用户注册赠送积分活动 1395083
关于科研通互助平台的介绍 1367077