Typhoon Trajectory Prediction by Three CNN+ Deep-Learning Approaches

台风 弹道 深度学习 人工智能 计算机科学 气象学 地理 物理 天文
作者
Gang Lin,Yanchun Liang,Adriano Tavares,Carlos Lima,Dong Xia
出处
期刊:Electronics [Multidisciplinary Digital Publishing Institute]
卷期号:13 (19): 3851-3851
标识
DOI:10.3390/electronics13193851
摘要

The accuracy in predicting the typhoon track can be key to minimizing their frequent disastrous effects. This article aims to study the accuracy of typhoon trajectory prediction obtained by combining several algorithms based on current deep-learning techniques. The combination of a Convolutional Neural Network with Long Short-Term Memory (CNN+LSTM), Patch Time-Series Transformer (CNN+PatchTST) and Transformer (CNN+Transformer) were the models chosen for this work. These algorithms were tested on the best typhoon track data from the China Meteorological Administration (CMA), ERA5 data from the European Centre for Medium-Range Weather Forecasts (ECMWF), and structured meteorological data from the Zhuhai Meteorological Bureau (ZMB) as an extension of existing studies that were based only on public data sources. The experimental results were obtained by testing two complete years of data (2021 and 2022), as an alternative to the frequent selection of a small number of typhoons in several years. Using the R-squared metric, results were obtained as significant as CNN+LSTM (0.991), CNN+PatchTST (0.989) and CNN+Transformer (0.969). CNN+LSTM without ZMB data can only obtain 0.987, i.e., 0.004 less than 0.991. Overall, our findings indicate that appropriately augmenting data near land and ocean boundaries around the coast improves typhoon track prediction.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
龙华之士发布了新的文献求助10
1秒前
wangding发布了新的文献求助10
4秒前
斯文败类应助zsy采纳,获得10
4秒前
快乐小狗发布了新的文献求助10
6秒前
朴实向南发布了新的文献求助10
8秒前
10秒前
minjeong完成签到,获得积分10
11秒前
11秒前
量子星尘发布了新的文献求助10
12秒前
快乐嚓茶完成签到 ,获得积分10
12秒前
qyn1234566发布了新的文献求助30
12秒前
13秒前
调皮初蝶发布了新的文献求助10
13秒前
科研通AI2S应助科研通管家采纳,获得10
14秒前
CipherSage应助科研通管家采纳,获得10
14秒前
酷波er应助科研通管家采纳,获得10
14秒前
NexusExplorer应助科研通管家采纳,获得10
14秒前
yar应助科研通管家采纳,获得10
14秒前
CodeCraft应助科研通管家采纳,获得10
14秒前
酷波er应助科研通管家采纳,获得30
14秒前
充电宝应助科研通管家采纳,获得10
14秒前
yar应助科研通管家采纳,获得10
14秒前
爆米花应助科研通管家采纳,获得10
14秒前
科研通AI5应助科研通管家采纳,获得10
14秒前
yar应助科研通管家采纳,获得10
14秒前
YamDaamCaa应助科研通管家采纳,获得30
14秒前
yar应助科研通管家采纳,获得10
14秒前
14秒前
14秒前
小新发布了新的文献求助30
14秒前
14秒前
不吃西瓜发布了新的文献求助10
15秒前
小蘑菇应助wangding采纳,获得10
16秒前
16秒前
17秒前
刘光正发布了新的文献求助10
19秒前
ymj完成签到,获得积分10
20秒前
王柯发布了新的文献求助10
20秒前
dada发布了新的文献求助10
20秒前
奋斗的王发布了新的文献求助10
21秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3975378
求助须知:如何正确求助?哪些是违规求助? 3519775
关于积分的说明 11199621
捐赠科研通 3256067
什么是DOI,文献DOI怎么找? 1798124
邀请新用户注册赠送积分活动 877386
科研通“疑难数据库(出版商)”最低求助积分说明 806305