亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Precise ablation zone segmentation on CT images after liver cancer ablation using semi‐automatic CNN‐based segmentation

分割 人工智能 烧蚀 计算机科学 豪斯多夫距离 图像分割 Sørensen–骰子系数 水准点(测量) 相似性(几何) 模式识别(心理学) 计算机视觉 医学 图像(数学) 大地测量学 内科学 地理
作者
Quoc Anh Le,Xuan Loc Pham,Theo van Walsum,Hang Viet Dao,Tuan Linh Le,Daniel Franklin,Adriaan Moelker,Ha Vu Le,Nguyen Linh-Trung,Luu Manh Ha
出处
期刊:Medical Physics [Wiley]
标识
DOI:10.1002/mp.17373
摘要

Abstract Background Ablation zone segmentation in contrast‐enhanced computed tomography (CECT) images enables the quantitative assessment of treatment success in the ablation of liver lesions. However, fully automatic liver ablation zone segmentation in CT images still remains challenging, such as low accuracy and time‐consuming manual refinement of the incorrect regions. Purpose Therefore, in this study, we developed a semi‐automatic technique to address the remaining drawbacks and improve the accuracy of the liver ablation zone segmentation in the CT images. Methods Our approach uses a combination of a CNN‐based automatic segmentation method and an interactive CNN‐based segmentation method. First, automatic segmentation is applied for coarse ablation zone segmentation in the whole CT image. Human experts then visually validate the segmentation results. If there are errors in the coarse segmentation, local corrections can be performed on each slice via an interactive CNN‐based segmentation method. The models were trained and the proposed method was evaluated using two internal datasets of post‐interventional CECT images ( = 22, = 145; 62 patients in total) and then further tested using an external benchmark dataset ( = 12; 10 patients). Results To evaluate the accuracy of the proposed approach, we used Dice similarity coefficient ( DSC ), average symmetric surface distance ( ASSD ), Hausdorff distance ( HD ), and volume difference ( VD ). The quantitative evaluation results show that the proposed approach obtained mean DSC , ASSD , HD , and VD scores of 94.0%, 0.4 mm, 8.4 mm, 0.02, respectively, on the internal dataset, and 87.8%, 0.9 mm, 9.5 mm, and −0.03, respectively, on the benchmark dataset. We also compared the performance of the proposed approach to that of five well‐known segmentation methods; the proposed semi‐automatic method achieved state‐of‐the‐art performance on ablation segmentation accuracy, and on average, 2 min are required to correct the segmentation. Furthermore, we found that the accuracy of the proposed method on the benchmark dataset is comparable to that of manual segmentation by human experts ( = 0.55, ‐test). Conclusions The proposed semi‐automatic CNN‐based segmentation method can be used to effectively segment the ablation zones, increasing the value of CECT for an assessment of treatment success. For reproducibility, the trained models, source code, and demonstration tool are publicly available at https://github.com/lqanh11/Interactive_AblationZone_Segmentation .

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
42秒前
1分钟前
阿菜完成签到,获得积分10
1分钟前
1分钟前
1分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
科研通AI2S应助唐画采纳,获得10
2分钟前
3分钟前
illscience发布了新的文献求助10
3分钟前
Lucas应助zxr采纳,获得10
3分钟前
3分钟前
zxr发布了新的文献求助10
3分钟前
3分钟前
4分钟前
犹豫曼岚发布了新的文献求助10
4分钟前
4分钟前
4分钟前
科研通AI2S应助犹豫曼岚采纳,获得10
4分钟前
5分钟前
5分钟前
化身孤岛的鲸完成签到 ,获得积分10
5分钟前
6分钟前
6分钟前
慧慧发布了新的文献求助10
6分钟前
6分钟前
6分钟前
上官若男应助zxr采纳,获得10
7分钟前
7分钟前
远方发布了新的文献求助10
7分钟前
zxr发布了新的文献求助10
7分钟前
华仔应助zhj采纳,获得10
7分钟前
ykcul完成签到 ,获得积分10
7分钟前
8分钟前
ykcul发布了新的文献求助10
8分钟前
积雪信完成签到 ,获得积分10
8分钟前
YifanWang完成签到,获得积分10
8分钟前
高分求助中
中国国际图书贸易总公司40周年纪念文集: 史论集 2500
Sustainability in Tides Chemistry 2000
Дружба 友好报 (1957-1958) 1000
The Data Economy: Tools and Applications 1000
Mantiden - Faszinierende Lauerjäger – Buch gebraucht kaufen 600
PraxisRatgeber Mantiden., faszinierende Lauerjäger. – Buch gebraucht kaufe 600
A Dissection Guide & Atlas to the Rabbit 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3111595
求助须知:如何正确求助?哪些是违规求助? 2761743
关于积分的说明 7667016
捐赠科研通 2416741
什么是DOI,文献DOI怎么找? 1282814
科研通“疑难数据库(出版商)”最低求助积分说明 619117
版权声明 599499