材料科学
溶剂化
阴极
理论(学习稳定性)
纳米技术
化学物理
化学工程
结晶学
物理化学
离子
有机化学
计算机科学
机器学习
物理
工程类
化学
作者
Zhenjie Zhang,Jing Wang,Xinyi Sun,Chuanchao Sheng,Maozeng Cheng,Huan Liu,Yiting Wang,Haoshen Zhou,Ping He
标识
DOI:10.1002/adfm.202411409
摘要
Abstract Increasing the charging cut‐off voltage can significantly improve the capacity of LiCoO 2 cathode. However, when the cut‐off voltage exceeds 4.5 V (vs Li/Li + ), LiCoO 2 undergoes irreversible phase transitions, leading to particle cracking and structural failure. Additionally, the decomposition of the electrolyte compromises the stability of the cathode/electrolyte interface, resulting in diminished battery capacity. Herein, the elements Al, Mg, and Zr are doped into single‐crystal LiCoO 2 to enhance the structural stability of LiCoO 2 . Moreover, a 3 Å zeolite film is used to regulate the solvation structure to enhance the oxidation resistance of the electrolyte. This design enables a more stable cathode/electrolyte interface during high‐voltage cycling. At a cut‐off voltage of 4.8 V, the Li||LiCoO 2 battery exhibits an initial discharge capacity of 236.2 mAh g −1 at 0.1 C and maintains 86.6% capacity retention after 100 cycles at 1 C. The pouch full cell, which utilizes a graphite anode and LiCoO 2 cathode, operating within a charge–discharge range of 2.8–4.65 V, achieves a specific energy of 276 Wh kg −1 with 81% capacity retention after 200 cycles. This work introduces a desolvated electrolyte into the LiCoO 2 battery system, providing a professional approach to addressing the challenges of high‐voltage LiCoO 2 .
科研通智能强力驱动
Strongly Powered by AbleSci AI