Are Recommendation Systems Annoying? An Empirical Study of Assessing the Impacts of AI Characteristics on Technology Well‐Being

实证研究 心理学 应用心理学 业务 数学 统计
作者
Zi Wang,Ruizhi Yuan,Boying Li
出处
期刊:Journal of Consumer Behaviour [Wiley]
标识
DOI:10.1002/cb.2408
摘要

ABSTRACT Recommendation systems—that is, a class of machine learning algorithm tools that filter vendors' offerings based on customer data and automatically recommend or generate personalized predictions—are empowered by artificial intelligence (AI) technology and embedded with AI characteristics; but the potential consequences for customer well‐being are greatly overlooked. Hence, this research investigates the impact of AI characteristics on technology well‐being (self‐efficacy, technology satisfaction, emotional dissonance, and autonomy) through two mechanisms: intuitiveness versus intrusiveness. A literature review which conceptualizes AI characteristics and technology well‐being in the recommendation system context is followed by a US‐based survey approach which shows that higher levels of information optimization, predictability, human likeness, and customizability lead to higher levels of intuitiveness, whereas only information optimization and human likeness leads to increased intrusiveness. However, both intuitiveness and intrusiveness are found to promote technology well‐being in the context of a recommendation system, especially for those more vulnerable individuals who respond positively to intrusiveness. Hence, the conclusion is “the recommendations are not always annoying,” whereby the relationships between AI characteristics and technology well‐being are significantly influenced by perceived intrusiveness. These findings help business practitioners to identify how consumers perceive and engage different AI characteristics, and therefore could better take care of technology well‐being while boosting AI development.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赘婿应助科研通管家采纳,获得10
刚刚
yar应助科研通管家采纳,获得10
刚刚
科研通AI2S应助科研通管家采纳,获得10
刚刚
yar应助科研通管家采纳,获得10
刚刚
yar应助科研通管家采纳,获得10
刚刚
打打应助科研通管家采纳,获得10
刚刚
orixero应助科研通管家采纳,获得10
1秒前
1秒前
上官若男应助科研通管家采纳,获得30
1秒前
yar应助科研通管家采纳,获得10
1秒前
ED应助科研通管家采纳,获得10
1秒前
LiuDongqian发布了新的文献求助10
2秒前
弈心完成签到 ,获得积分10
3秒前
李小燕发布了新的文献求助10
3秒前
4秒前
4秒前
7秒前
大威天龙发布了新的文献求助10
8秒前
赘婿应助SMLW采纳,获得10
8秒前
9秒前
小古发布了新的文献求助10
10秒前
李爱国应助聪慧芷巧采纳,获得10
10秒前
Yasong发布了新的文献求助30
10秒前
B站萧亚轩发布了新的文献求助10
11秒前
木木完成签到 ,获得积分10
11秒前
123关注了科研通微信公众号
11秒前
Jasper应助果实采纳,获得10
11秒前
JUNJUN发布了新的文献求助100
14秒前
16秒前
抹茶泡泡完成签到 ,获得积分10
16秒前
16秒前
jivapar发布了新的文献求助10
17秒前
柠檬发布了新的文献求助10
19秒前
20秒前
shasha完成签到,获得积分10
20秒前
wdwd发布了新的文献求助10
21秒前
小星星发布了新的文献求助10
23秒前
24秒前
24秒前
25秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961075
求助须知:如何正确求助?哪些是违规求助? 3507317
关于积分的说明 11135554
捐赠科研通 3239809
什么是DOI,文献DOI怎么找? 1790434
邀请新用户注册赠送积分活动 872380
科研通“疑难数据库(出版商)”最低求助积分说明 803150