石墨烯
吸附
材料科学
纳米材料
萃取(化学)
氧化物
离子键合
化学工程
纳米反应器
纳米技术
离子
化学
纳米颗粒
有机化学
冶金
工程类
作者
Kou Yang,Konstantin G. Nikolaev,Xiaolai Li,Artemii S. Ivanov,Jia Hui Bong,Ivan Erofeev,Utkur Mirsaidov,Vasyl G. Kravets,A. N. Grigorenko,Shanqing Zhang,Xueqing Qiu,Kostya S. Novoselov,Daria V. Andreeva
标识
DOI:10.1073/pnas.2414449121
摘要
The extraction of gold (Au) from electronic waste (e-waste) has both environmental impact and inherent value. Improper e-waste disposal poses environmental and health risks, entailing substantial remediation and healthcare costs. Large efforts are applied for the recovery of Au from e-waste using complex processes which include the dissolution of Au, its adsorption in an ionic state and succeeding reduction to metallic Au. These processes themselves being complex and utilizing harsh chemicals contribute to the environmental impact of e-waste. Here, we present an approach for the simultaneous recovery and reduction of Au 3+ and Au + ions from e-waste to produce solid Au 0 forms, thus skipping several technological steps. We develop a nanoscale cross-dimensional composite material via self-assembly of two-dimensional graphene oxide and one-dimensional chitosan macromolecules, capable of acting simultaneously as a scavenger of gold ions and as a reducing agent. Such multidimensional architecture doesn’t require to apply any voltage for Au adsorption and reduction and solely relies on the chemisorption kinetics of Au ions in the heterogeneous GO/CS nanoconfinements and their chemical reduction on multiple binding sites. The cooperative phenomena in ionic absorption are responsible for the extremely high efficiency of gold extraction. The extraction capacity reaches 16.8 g/g for Au 3+ and 6.2 g/g for Au + , which is ten times larger than any existing gold adsorbents can propose. The efficiency is above 99.5 wt.% (current limit is 75 wt.%) and extraction ability is down to very low concentrations of 3 ppm.
科研通智能强力驱动
Strongly Powered by AbleSci AI