相扑蛋白
肿瘤微环境
生物
癌症研究
胰腺癌
体内
免疫系统
流式细胞术
转录组
获得性免疫系统
癌症
免疫学
基因表达
泛素
基因
遗传学
作者
Suna Erdem,James Lee,Jayanth S. Shankara Narayanan,M.D. Neranjan Tharuka,Jorge De La Torre De La Torre,Tianchen Ren,Yixuan Kuang,Tharindumala Abeywardana,Kevin Li,Allison Berger,Andrew M. Lowy,Rebekah R. White,Yuan Chen
出处
期刊:Molecular Cancer Therapeutics
[American Association for Cancer Research]
日期:2024-08-16
卷期号:: OF1-OF16
标识
DOI:10.1158/1535-7163.mct-23-0572
摘要
Abstract Improvement of outcome in patients with pancreatic ductal adenocarcinoma (PDAC) requires exploration of novel therapeutic targets. Thus far, most studies of PDAC therapies, including those inhibiting small ubiquitin-like modifications (SUMOylation), have focused on PDAC epithelial cell biology, yet SUMOylation occurs in a variety of cell types. The mechanisms by which SUMOylation impacts PDAC in the context of its tumor microenvironment are poorly understood. We used clinically relevant orthotopic PDAC mouse models to investigate the effect of SUMOylation inhibition using a specific, clinical-stage compound, TAK-981. In contrast to its inhibition of PDAC cell proliferation in vitro, the survival benefit conferred by TAK-981 in vivo is dependent on the presence of T cells, suggesting that induction of adaptive antitumor immunity is an important antitumor effect of SUMOylation inhibition in vivo. To understand how this adaptive antitumor immunity is promoted, we investigated how SUMOylation inhibition in vivo alters major cell types/subtypes and their communications in the PDAC tumor microenvironment by performing transcriptomic analyses at single-cell resolution, which allowed mapping of cells in our orthotopic mouse model to cells in human PDAC tumors based on gene expression profiles. Findings are further validated by flow cytometry, immunofluorescence, IHC, western blots, and qPCR. The single-cell transcriptome dataset provided here suggests several combination strategies to augment adaptive immune responses that are necessary for durable disease control in patients with PDAC.
科研通智能强力驱动
Strongly Powered by AbleSci AI