Unraveling the mesoscale organization induced by network-driven processes

雅可比矩阵与行列式 公制(单位) 计算机科学 复杂网络 复杂系统 拓扑(电路) 网络动力学 动力系统理论 过程(计算) 理论计算机科学 人工智能 数学 物理 操作系统 经济 万维网 离散数学 组合数学 运营管理 量子力学 应用数学
作者
Giacomo Barzon,Oriol Artime,Samir Suweis,Manlio De Domenico
出处
期刊:Proceedings of the National Academy of Sciences of the United States of America [National Academy of Sciences]
卷期号:121 (28) 被引量:1
标识
DOI:10.1073/pnas.2317608121
摘要

Complex systems are characterized by emergent patterns created by the nontrivial interplay between dynamical processes and the networks of interactions on which these processes unfold. Topological or dynamical descriptors alone are not enough to fully embrace this interplay in all its complexity, and many times one has to resort to dynamics-specific approaches that limit a comprehension of general principles. To address this challenge, we employ a metric—that we name Jacobian distance—which captures the spatiotemporal spreading of perturbations, enabling us to uncover the latent geometry inherent in network-driven processes. We compute the Jacobian distance for a broad set of nonlinear dynamical models on synthetic and real-world networks of high interest for applications from biological to ecological and social contexts. We show, analytically and computationally, that the process-driven latent geometry of a complex network is sensitive to both the specific features of the dynamics and the topological properties of the network. This translates into potential mismatches between the functional and the topological mesoscale organization, which we explain by means of the spectrum of the Jacobian matrix. Finally, we demonstrate that the Jacobian distance offers a clear advantage with respect to traditional methods when studying human brain networks. In particular, we show that it outperforms classical network communication models in explaining functional communities from structural data, therefore highlighting its potential in linking structure and function in the brain.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
天天快乐应助yrd采纳,获得10
1秒前
kingwill应助xmz采纳,获得20
1秒前
leoott完成签到,获得积分10
1秒前
沐沐发布了新的文献求助10
1秒前
bobo呀发布了新的文献求助10
1秒前
xmhxpz发布了新的文献求助10
2秒前
小白I实验完成签到,获得积分10
2秒前
ding应助flynn3735采纳,获得10
3秒前
3秒前
4秒前
TIAN关注了科研通微信公众号
4秒前
111完成签到,获得积分10
4秒前
opp发布了新的文献求助10
6秒前
菠萝完成签到,获得积分10
7秒前
Sakura完成签到,获得积分10
7秒前
帅气绝施发布了新的文献求助10
8秒前
9秒前
yuzhongLuo发布了新的文献求助10
9秒前
我就叫渣渣辉吧完成签到,获得积分10
10秒前
10秒前
修仙中应助优秀的方盒采纳,获得10
10秒前
11秒前
直率如凡完成签到,获得积分10
11秒前
11秒前
12秒前
13秒前
hitzwd完成签到,获得积分10
13秒前
13秒前
优雅草丛应助科研通管家采纳,获得40
14秒前
星辰大海应助qq大魔王采纳,获得10
14秒前
情怀应助科研通管家采纳,获得10
14秒前
Ava应助科研通管家采纳,获得10
14秒前
赘婿应助科研通管家采纳,获得10
14秒前
14秒前
共享精神应助科研通管家采纳,获得10
14秒前
14秒前
科目三应助科研通管家采纳,获得10
15秒前
浮游应助科研通管家采纳,获得10
15秒前
xrrrr应助科研通管家采纳,获得10
15秒前
浮游应助科研通管家采纳,获得10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Constitutional and Administrative Law 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5264178
求助须知:如何正确求助?哪些是违规求助? 4424447
关于积分的说明 13773074
捐赠科研通 4299589
什么是DOI,文献DOI怎么找? 2359124
邀请新用户注册赠送积分活动 1355370
关于科研通互助平台的介绍 1316708