Unraveling the mesoscale organization induced by network-driven processes

雅可比矩阵与行列式 公制(单位) 计算机科学 复杂网络 复杂系统 拓扑(电路) 网络动力学 动力系统理论 过程(计算) 理论计算机科学 人工智能 数学 物理 运营管理 离散数学 组合数学 量子力学 应用数学 万维网 经济 操作系统
作者
Giacomo Barzon,Oriol Artime,Samir Suweis,Manlio De Domenico
出处
期刊:Proceedings of the National Academy of Sciences of the United States of America [Proceedings of the National Academy of Sciences]
卷期号:121 (28) 被引量:1
标识
DOI:10.1073/pnas.2317608121
摘要

Complex systems are characterized by emergent patterns created by the nontrivial interplay between dynamical processes and the networks of interactions on which these processes unfold. Topological or dynamical descriptors alone are not enough to fully embrace this interplay in all its complexity, and many times one has to resort to dynamics-specific approaches that limit a comprehension of general principles. To address this challenge, we employ a metric—that we name Jacobian distance—which captures the spatiotemporal spreading of perturbations, enabling us to uncover the latent geometry inherent in network-driven processes. We compute the Jacobian distance for a broad set of nonlinear dynamical models on synthetic and real-world networks of high interest for applications from biological to ecological and social contexts. We show, analytically and computationally, that the process-driven latent geometry of a complex network is sensitive to both the specific features of the dynamics and the topological properties of the network. This translates into potential mismatches between the functional and the topological mesoscale organization, which we explain by means of the spectrum of the Jacobian matrix. Finally, we demonstrate that the Jacobian distance offers a clear advantage with respect to traditional methods when studying human brain networks. In particular, we show that it outperforms classical network communication models in explaining functional communities from structural data, therefore highlighting its potential in linking structure and function in the brain.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大力鱼发布了新的文献求助10
刚刚
1秒前
2秒前
2秒前
shilong.yang完成签到,获得积分10
2秒前
jy发布了新的文献求助10
3秒前
4秒前
4秒前
梦里发布了新的文献求助10
5秒前
falcon完成签到 ,获得积分10
6秒前
劈里啪啦发布了新的文献求助10
7秒前
耿强发布了新的文献求助10
7秒前
科研通AI5应助坚强的樱采纳,获得10
7秒前
陈杰发布了新的文献求助10
7秒前
nozero完成签到,获得积分10
9秒前
澜生发布了新的文献求助10
10秒前
在水一方应助惠惠采纳,获得10
10秒前
852应助zZ采纳,获得10
10秒前
小马甲应助陌路采纳,获得10
11秒前
1335804518完成签到 ,获得积分10
12秒前
12秒前
甜甜醉波完成签到,获得积分10
12秒前
科研通AI2S应助卷卷王采纳,获得10
13秒前
可爱的函函应助梦里采纳,获得10
13秒前
沐晴完成签到,获得积分10
14秒前
入夏完成签到,获得积分10
14秒前
14秒前
14秒前
苏州小北发布了新的文献求助10
15秒前
15秒前
snail完成签到,获得积分10
16秒前
劈里啪啦完成签到,获得积分10
16秒前
wanci应助Jasmine采纳,获得10
17秒前
aoxiangcaizi12完成签到,获得积分10
17秒前
ding应助通~采纳,获得30
18秒前
19秒前
Annie发布了新的文献求助10
19秒前
晨曦完成签到,获得积分10
20秒前
十一发布了新的文献求助10
20秒前
顾矜应助Peter采纳,获得30
21秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794