支柱
封装(网络)
非线性光学
非线性系统
材料科学
离子
光电子学
光化学
纳米技术
化学
计算机科学
计算机网络
物理
工程类
有机化学
量子力学
结构工程
作者
Ming Li,Chuanbin Mao,Ming Li,Yanfang Wang,Li Shao,Bin Hua,Xiaofeng Liu,Feihe Huang
标识
DOI:10.1002/chem.202402345
摘要
Constructing organic composite materials through molecular recognition has emerged as an important theme in materials science. Here we report an ion‐pair recognition system involving the use of a propoxylated pillar[5]arene (PrP5) to modulate the solid‐state photophysical properties of dye trans‐4’‐(dimethylamino)‐N‐methyl‐4‐stilbazolium hexafluorophosphate (DMASP). Single crystal X‐ray diffraction analysis reveals that the dye guest DMASP is encapsulated by PrP5 to form a 2:1 host−guest complex 2PrP5⸧DMASP in the crystalline state. The macrocyclic skeleton of PrP5 imposes restrictions on the intramolecular motions of the dye guest, leading to a significant enhancement of its fluorescence emission. Additionally, within the 2PrP5⸧DMASP complex crystal structure, DMASP molecules are found to display two possible opposite orientations in the one‐dimensional channels formed by PrP5 molecules. This arrangement is believed to alter the overall solid‐state packing structure of DMASP, thereby activating its nonlinear optical activity. This work not only reports a novel ion‐pair molecular recognition system based on pillararenes but also provides valuable insights into the modulation of the crystalline state photophysical properties of organic dyes via cocrystal engineering.
科研通智能强力驱动
Strongly Powered by AbleSci AI