Unsupervised Non-rigid Histological Image Registration Guided by Keypoint Correspondences Based on Learnable Deep Features with Iterative Training

人工智能 图像配准 计算机视觉 计算机科学 模式识别(心理学) 迭代法 迭代重建 图像(数学) 医学影像学 数学 算法
作者
Xingyue Wei,Lin Ge,Lijie Huang,Jianwen Luo,Yan Xu
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tmi.2024.3447214
摘要

Histological image registration is a fundamental task in histological image analysis. It is challenging because of substantial appearance differences due to multiple staining. Keypoint correspondences, i.e., matched keypoint pairs, have been introduced to guide unsupervised deep learning (DL) based registration methods to handle such a registration task. This paper proposes an iterative keypoint correspondence-guided (IKCG) unsupervised network for non-rigid histological image registration. Fixed deep features and learnable deep features are introduced as keypoint descriptors to automatically establish keypoint correspondences, the distance between which is used as a loss function to train the registration network. Fixed deep features extracted from DL networks that are pre-trained on natural image datasets are more discriminative than handcrafted ones, benefiting from the deep and hierarchical nature of DL networks. The intermediate layer outputs of the registration networks trained on histological image datasets are extracted as learnable deep features, which reveal unique information for histological images. An iterative training strategy is adopted to train the registration network and optimize learnable deep features jointly. Benefiting from the excellent matching ability of learnable deep features optimized with the iterative training strategy, the proposed method can solve the local non-rigid large displacement problem, an inevitable problem usually caused by misoperation, such as tears in producing tissue slices. The proposed method is evaluated on the Automatic Non-rigid Histology Image Registration (ANHIR) website and AutomatiC Registration Of Breast cAncer Tissue (ACROBAT) website. It ranked 1st on both websites as of August 6th, 2024.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
充电宝应助不胜玖采纳,获得50
1秒前
妮妮爱smile完成签到,获得积分10
1秒前
2秒前
2秒前
永远55度发布了新的文献求助10
3秒前
今后应助快乐的水绿采纳,获得10
4秒前
4秒前
5秒前
Akim应助拓跋听南采纳,获得20
5秒前
6秒前
Hover完成签到,获得积分0
6秒前
呆萌松鼠完成签到,获得积分10
6秒前
秋刀鱼完成签到,获得积分10
7秒前
苻尔曼完成签到,获得积分20
7秒前
gao完成签到,获得积分10
8秒前
禹平露完成签到,获得积分10
9秒前
ai化学发布了新的文献求助10
9秒前
徐嘎嘎发布了新的文献求助10
10秒前
10秒前
10秒前
呜呜发布了新的文献求助10
11秒前
11秒前
ZJX发布了新的文献求助10
12秒前
Tristan完成签到 ,获得积分10
12秒前
13秒前
yeye完成签到,获得积分10
14秒前
zyy发布了新的文献求助30
16秒前
西哥发布了新的文献求助10
16秒前
17秒前
感谢香蕉汉堡转发科研通微信,获得积分50
17秒前
aaa完成签到 ,获得积分10
18秒前
wxl发布了新的文献求助10
18秒前
羁绊完成签到,获得积分10
18秒前
19秒前
萤阳发布了新的文献求助10
19秒前
科研通AI5应助呜呜采纳,获得10
20秒前
20秒前
21秒前
等待静枫完成签到,获得积分10
21秒前
peterlu完成签到,获得积分10
21秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3737633
求助须知:如何正确求助?哪些是违规求助? 3281316
关于积分的说明 10024435
捐赠科研通 2998032
什么是DOI,文献DOI怎么找? 1645003
邀请新用户注册赠送积分活动 782459
科研通“疑难数据库(出版商)”最低求助积分说明 749814