AlphaFold 2-based stacking model for protein solubility prediction and its transferability on seed storage proteins

可转让性 溶解度 堆积 支持向量机 化学 多层感知器 构造(python库) 图形 生物系统 人工智能 计算机科学 生物 有机化学 理论计算机科学 人工神经网络 机器学习 罗伊特 程序设计语言
作者
Hyukjin Kwon,Zhenjiao Du,Yonghui Li
出处
期刊:International Journal of Biological Macromolecules [Elsevier]
卷期号:278: 134601-134601
标识
DOI:10.1016/j.ijbiomac.2024.134601
摘要

Accurate protein solubility prediction is crucial in screening suitable candidates for food application. Existing models often rely only on sequences, overlooking important structural details. In this study, a regression model for protein solubility was developed using both the sequences and predicted structures of 2983 E. coli proteins. The sequence and structural level properties of the proteins were bioinformatically extracted and subjected to multilayer perceptron (MLP). Moreover, residue level features and contact maps were utilized to construct a graph convolutional network (GCN). The out-of-fold predictions of the two models were combined and fed into multiple meta-regressors to create a stacking model. The stacking model with support vector regressor (SVR) achieved R2 of 0.502 and 0.468 on test and external validation datasets, respectively, displaying higher performance compared to existing regression models. Based on the improved performance compared to its based models, the stacking model effectively captured the strength of its base models as well as the significance of the different features used. Furthermore, the model's transferability was indirectly validated on a dataset of seed storage proteins using Osborne definition as well as on a case study using molecular dynamic simulation, showing potential for application beyond microbial proteins to food and agriculture-related ones.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
昊昊完成签到,获得积分10
刚刚
chenman9397发布了新的文献求助10
1秒前
大模型应助real季氢采纳,获得10
1秒前
张聪发布了新的文献求助30
1秒前
隔壁巷子里的劉完成签到 ,获得积分10
2秒前
3秒前
3秒前
3秒前
kin完成签到 ,获得积分10
3秒前
七七发布了新的文献求助20
5秒前
5秒前
哭泣的海莲完成签到,获得积分10
7秒前
7秒前
无花果应助淡然老太采纳,获得10
7秒前
SciGPT应助YuGe采纳,获得10
8秒前
kkkl发布了新的文献求助10
8秒前
Lucas应助刻苦的热狗采纳,获得30
8秒前
9秒前
香蕉觅云应助soar采纳,获得10
9秒前
orixero应助呜啦啦采纳,获得10
10秒前
FashionBoy应助美丽凌柏采纳,获得10
10秒前
清爽的乐曲完成签到,获得积分10
10秒前
ding应助xx采纳,获得10
11秒前
星辰大海应助Xx.采纳,获得10
11秒前
赘婿应助哭泣的海莲采纳,获得10
11秒前
研友_VZG7GZ应助哭泣的海莲采纳,获得10
11秒前
JINY完成签到,获得积分10
11秒前
yukime发布了新的文献求助10
11秒前
11秒前
jingyu完成签到,获得积分10
12秒前
董文迪完成签到,获得积分20
13秒前
CodeCraft应助Alina1874采纳,获得10
14秒前
丝丢皮的发布了新的文献求助10
15秒前
大模型应助Jennifer采纳,获得10
15秒前
这两天天气咋样完成签到,获得积分20
16秒前
情怀应助吃不饱星球球长采纳,获得10
16秒前
16秒前
huagelihai发布了新的文献求助10
16秒前
ll完成签到,获得积分10
17秒前
18秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
A new approach of magnetic circular dichroism to the electronic state analysis of intact photosynthetic pigments 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3148786
求助须知:如何正确求助?哪些是违规求助? 2799787
关于积分的说明 7837076
捐赠科研通 2457292
什么是DOI,文献DOI怎么找? 1307821
科研通“疑难数据库(出版商)”最低求助积分说明 628276
版权声明 601663