AlphaFold 2-based stacking model for protein solubility prediction and its transferability on seed storage proteins

可转让性 溶解度 堆积 支持向量机 化学 多层感知器 构造(python库) 图形 生物系统 人工智能 计算机科学 生物 有机化学 理论计算机科学 人工神经网络 机器学习 罗伊特 程序设计语言
作者
Hyukjin Kwon,Zhenjiao Du,Yonghui Li
出处
期刊:International Journal of Biological Macromolecules [Elsevier BV]
卷期号:278: 134601-134601
标识
DOI:10.1016/j.ijbiomac.2024.134601
摘要

Accurate protein solubility prediction is crucial in screening suitable candidates for food application. Existing models often rely only on sequences, overlooking important structural details. In this study, a regression model for protein solubility was developed using both the sequences and predicted structures of 2983 E. coli proteins. The sequence and structural level properties of the proteins were bioinformatically extracted and subjected to multilayer perceptron (MLP). Moreover, residue level features and contact maps were utilized to construct a graph convolutional network (GCN). The out-of-fold predictions of the two models were combined and fed into multiple meta-regressors to create a stacking model. The stacking model with support vector regressor (SVR) achieved R2 of 0.502 and 0.468 on test and external validation datasets, respectively, displaying higher performance compared to existing regression models. Based on the improved performance compared to its based models, the stacking model effectively captured the strength of its base models as well as the significance of the different features used. Furthermore, the model's transferability was indirectly validated on a dataset of seed storage proteins using Osborne definition as well as on a case study using molecular dynamic simulation, showing potential for application beyond microbial proteins to food and agriculture-related ones.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
打打应助lalala采纳,获得10
1秒前
1秒前
yml完成签到 ,获得积分10
1秒前
2秒前
如月完成签到 ,获得积分10
2秒前
喜多米430发布了新的文献求助30
2秒前
充电宝应助ysy采纳,获得10
3秒前
无花果应助Lumia采纳,获得10
3秒前
3秒前
baobao关注了科研通微信公众号
4秒前
犹豫若云完成签到,获得积分20
5秒前
kk完成签到,获得积分10
6秒前
咯吱发布了新的文献求助10
6秒前
6秒前
慕青应助2917采纳,获得10
7秒前
7秒前
marco发布了新的文献求助10
7秒前
局内人发布了新的文献求助10
7秒前
lan发布了新的文献求助10
7秒前
田様应助QDD采纳,获得10
8秒前
丘比特应助太麻烦了啦采纳,获得10
9秒前
9秒前
英俊的铭应助WYP采纳,获得10
10秒前
10秒前
10秒前
shunshun发布了新的文献求助10
11秒前
兴奋的定帮应助Ccccsa采纳,获得10
11秒前
12秒前
酷波er应助局内人采纳,获得10
12秒前
CodeCraft应助123采纳,获得10
12秒前
量子星尘发布了新的文献求助10
13秒前
热心的棒棒糖完成签到 ,获得积分10
13秒前
hanmeige发布了新的文献求助10
13秒前
lijing123完成签到,获得积分10
13秒前
14秒前
14秒前
14秒前
所所应助顺心的巨人采纳,获得10
14秒前
Billy发布了新的文献求助10
14秒前
Summer发布了新的文献求助10
15秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952038
求助须知:如何正确求助?哪些是违规求助? 3497457
关于积分的说明 11087593
捐赠科研通 3228096
什么是DOI,文献DOI怎么找? 1784669
邀请新用户注册赠送积分活动 868839
科研通“疑难数据库(出版商)”最低求助积分说明 801198