Rescue path planning for urban flood: A deep reinforcement learning–based approach

强化学习 运动规划 计算机科学 洪水(心理学) 大洪水 路径(计算) 风险分析(工程) 运筹学 人工智能 工程类 地理 业务 机器人 考古 程序设计语言 心理治疗师 心理学
作者
Xiaoyan Li,Xia Wang
出处
期刊:Risk Analysis [Wiley]
标识
DOI:10.1111/risa.17599
摘要

Urban flooding is among the costliest natural disasters worldwide. Timely and effective rescue path planning is crucial for minimizing loss of life and property. However, current research on path planning often fails to adequately consider the need to assess area risk uncertainties and bypass complex obstacles in flood rescue scenarios, presenting significant challenges for developing optimal rescue paths. This study proposes a deep reinforcement learning (RL) algorithm incorporating four main mechanisms to address these issues. Dual-priority experience replays and backtrack punishment mechanisms enhance the precise estimation of area risks. Concurrently, random noisy networks and dynamic exploration techniques encourage the agent to explore unknown areas in the environment, thereby improving sampling and optimizing strategies for bypassing complex obstacles. The study constructed multiple grid simulation scenarios based on real-world rescue operations in major urban flood disasters. These scenarios included uncertain risk values for all passable areas and an increased presence of complex elements, such as narrow passages, C-shaped barriers, and jagged paths, significantly raising the challenge of path planning. The comparative analysis demonstrated that only the proposed algorithm could bypass all obstacles and plan the optimal rescue path across nine scenarios. This research advances the theoretical progress for urban flood rescue path planning by extending the scale of scenarios to unprecedented levels. It also develops RL mechanisms adaptable to various extremely complex obstacles in path planning. Additionally, it provides methodological insights into artificial intelligence to enhance real-world risk management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
田様应助xcont采纳,获得10
刚刚
刚刚
刚刚
玄xuan关注了科研通微信公众号
刚刚
叮叮完成签到 ,获得积分10
1秒前
1秒前
Lee完成签到,获得积分10
1秒前
1秒前
1秒前
Dorren发布了新的文献求助10
2秒前
2秒前
左丘以云发布了新的文献求助20
2秒前
科研通AI5应助犹豫的绝悟采纳,获得30
2秒前
2秒前
2秒前
香蕉觅云应助我叫逗你玩采纳,获得10
2秒前
完美世界应助liangzhao采纳,获得30
2秒前
fujikaze完成签到 ,获得积分10
3秒前
言非离发布了新的文献求助150
3秒前
3秒前
Owen应助求思东观令采纳,获得10
3秒前
123完成签到,获得积分10
3秒前
3秒前
3秒前
Kate发布了新的文献求助10
4秒前
寂寞的迎天完成签到,获得积分10
4秒前
LXx发布了新的文献求助10
4秒前
CipherSage应助玉洁采纳,获得10
4秒前
甜美帅哥完成签到,获得积分10
4秒前
灰灰成长中完成签到,获得积分10
4秒前
4秒前
鲁鲁完成签到,获得积分20
4秒前
5秒前
lanminghao完成签到 ,获得积分10
5秒前
6秒前
6秒前
zhaopen完成签到,获得积分20
6秒前
高大山彤完成签到,获得积分10
6秒前
6秒前
慕青应助魏菁菁采纳,获得10
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Feigin and Cherry's Textbook of Pediatric Infectious Diseases Ninth Edition 2024 4000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
Socialization In The Context Of The Family: Parent-Child Interaction 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5001525
求助须知:如何正确求助?哪些是违规求助? 4246659
关于积分的说明 13230789
捐赠科研通 4045478
什么是DOI,文献DOI怎么找? 2213078
邀请新用户注册赠送积分活动 1223305
关于科研通互助平台的介绍 1143569