Rescue path planning for urban flood: A deep reinforcement learning–based approach

强化学习 运动规划 计算机科学 洪水(心理学) 大洪水 路径(计算) 风险分析(工程) 运筹学 人工智能 工程类 地理 业务 心理学 考古 机器人 心理治疗师 程序设计语言
作者
Xiaoyan Li,Xia Wang
出处
期刊:Risk Analysis [Wiley]
标识
DOI:10.1111/risa.17599
摘要

Urban flooding is among the costliest natural disasters worldwide. Timely and effective rescue path planning is crucial for minimizing loss of life and property. However, current research on path planning often fails to adequately consider the need to assess area risk uncertainties and bypass complex obstacles in flood rescue scenarios, presenting significant challenges for developing optimal rescue paths. This study proposes a deep reinforcement learning (RL) algorithm incorporating four main mechanisms to address these issues. Dual-priority experience replays and backtrack punishment mechanisms enhance the precise estimation of area risks. Concurrently, random noisy networks and dynamic exploration techniques encourage the agent to explore unknown areas in the environment, thereby improving sampling and optimizing strategies for bypassing complex obstacles. The study constructed multiple grid simulation scenarios based on real-world rescue operations in major urban flood disasters. These scenarios included uncertain risk values for all passable areas and an increased presence of complex elements, such as narrow passages, C-shaped barriers, and jagged paths, significantly raising the challenge of path planning. The comparative analysis demonstrated that only the proposed algorithm could bypass all obstacles and plan the optimal rescue path across nine scenarios. This research advances the theoretical progress for urban flood rescue path planning by extending the scale of scenarios to unprecedented levels. It also develops RL mechanisms adaptable to various extremely complex obstacles in path planning. Additionally, it provides methodological insights into artificial intelligence to enhance real-world risk management.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
大树应助孔乙己采纳,获得10
2秒前
2秒前
daaqiu完成签到,获得积分10
2秒前
虚幻谷波完成签到,获得积分10
3秒前
fan发布了新的文献求助50
3秒前
3秒前
后来发布了新的文献求助10
3秒前
蒋j完成签到,获得积分10
3秒前
super chan完成签到,获得积分10
3秒前
吃人陈完成签到,获得积分10
4秒前
4秒前
4秒前
大玉124完成签到 ,获得积分10
4秒前
灵光一闪完成签到,获得积分10
4秒前
炎魔之王拉格纳罗斯完成签到,获得积分10
4秒前
Something完成签到,获得积分10
5秒前
5秒前
5秒前
5秒前
ding应助张远幸采纳,获得10
6秒前
小冯发布了新的文献求助150
6秒前
6秒前
驰骋完成签到,获得积分10
7秒前
科研通AI6应助kid采纳,获得30
7秒前
Jasper应助典雅寻桃采纳,获得20
7秒前
7秒前
8秒前
火星上的百川完成签到,获得积分10
8秒前
Channing发布了新的文献求助20
8秒前
8秒前
8秒前
Randy发布了新的文献求助10
8秒前
5114完成签到,获得积分10
9秒前
爱笑的幼菱完成签到,获得积分10
9秒前
yeyetomatoe发布了新的文献求助10
9秒前
hygge发布了新的文献求助10
9秒前
量子星尘发布了新的文献求助10
9秒前
研友_VZG7GZ应助ling采纳,获得10
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5652169
求助须知:如何正确求助?哪些是违规求助? 4786896
关于积分的说明 15058821
捐赠科研通 4810805
什么是DOI,文献DOI怎么找? 2573410
邀请新用户注册赠送积分活动 1529283
关于科研通互助平台的介绍 1488184