Rescue path planning for urban flood: A deep reinforcement learning–based approach

强化学习 运动规划 计算机科学 洪水(心理学) 大洪水 路径(计算) 风险分析(工程) 运筹学 人工智能 工程类 地理 业务 心理学 考古 机器人 心理治疗师 程序设计语言
作者
Xiaoyan Li,Xia Wang
出处
期刊:Risk Analysis [Wiley]
标识
DOI:10.1111/risa.17599
摘要

Urban flooding is among the costliest natural disasters worldwide. Timely and effective rescue path planning is crucial for minimizing loss of life and property. However, current research on path planning often fails to adequately consider the need to assess area risk uncertainties and bypass complex obstacles in flood rescue scenarios, presenting significant challenges for developing optimal rescue paths. This study proposes a deep reinforcement learning (RL) algorithm incorporating four main mechanisms to address these issues. Dual-priority experience replays and backtrack punishment mechanisms enhance the precise estimation of area risks. Concurrently, random noisy networks and dynamic exploration techniques encourage the agent to explore unknown areas in the environment, thereby improving sampling and optimizing strategies for bypassing complex obstacles. The study constructed multiple grid simulation scenarios based on real-world rescue operations in major urban flood disasters. These scenarios included uncertain risk values for all passable areas and an increased presence of complex elements, such as narrow passages, C-shaped barriers, and jagged paths, significantly raising the challenge of path planning. The comparative analysis demonstrated that only the proposed algorithm could bypass all obstacles and plan the optimal rescue path across nine scenarios. This research advances the theoretical progress for urban flood rescue path planning by extending the scale of scenarios to unprecedented levels. It also develops RL mechanisms adaptable to various extremely complex obstacles in path planning. Additionally, it provides methodological insights into artificial intelligence to enhance real-world risk management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kokodayour完成签到,获得积分10
刚刚
Quin完成签到,获得积分10
刚刚
刚刚
冷艳乐松完成签到,获得积分10
1秒前
1秒前
1秒前
诸葛雪兰完成签到,获得积分10
2秒前
洛尚完成签到,获得积分10
2秒前
czq完成签到,获得积分10
2秒前
VVhahaha完成签到,获得积分10
3秒前
limof发布了新的文献求助10
3秒前
4秒前
小葡萄完成签到 ,获得积分10
4秒前
5秒前
wu发布了新的文献求助30
5秒前
6秒前
毕业就好发布了新的文献求助10
6秒前
6秒前
6秒前
冷艳乐松发布了新的文献求助10
7秒前
iedq完成签到 ,获得积分10
7秒前
嗯呢发布了新的文献求助10
7秒前
vivienne完成签到,获得积分10
7秒前
搜集达人应助2021的萌爷爷采纳,获得10
7秒前
烟花不能太放肆关注了科研通微信公众号
7秒前
zyy完成签到,获得积分10
7秒前
8秒前
8秒前
wanci应助细腻晓露采纳,获得10
8秒前
Lucas应助XinyiZhang采纳,获得10
9秒前
科研通AI2S应助芋头采纳,获得10
10秒前
瘦瘦的铅笔完成签到 ,获得积分10
10秒前
manan发布了新的文献求助10
10秒前
01259发布了新的文献求助30
10秒前
10秒前
斯文败类应助zyh945采纳,获得10
10秒前
南山无梅落完成签到 ,获得积分10
10秒前
淡定吃吃完成签到,获得积分10
10秒前
科研通AI5应助称心砖头采纳,获得10
11秒前
淡淡从蕾完成签到,获得积分10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740