Rescue path planning for urban flood: A deep reinforcement learning–based approach

强化学习 运动规划 计算机科学 洪水(心理学) 大洪水 路径(计算) 风险分析(工程) 运筹学 人工智能 工程类 地理 业务 心理学 考古 机器人 心理治疗师 程序设计语言
作者
Xiaoyan Li,Xia Wang
出处
期刊:Risk Analysis [Wiley]
标识
DOI:10.1111/risa.17599
摘要

Urban flooding is among the costliest natural disasters worldwide. Timely and effective rescue path planning is crucial for minimizing loss of life and property. However, current research on path planning often fails to adequately consider the need to assess area risk uncertainties and bypass complex obstacles in flood rescue scenarios, presenting significant challenges for developing optimal rescue paths. This study proposes a deep reinforcement learning (RL) algorithm incorporating four main mechanisms to address these issues. Dual-priority experience replays and backtrack punishment mechanisms enhance the precise estimation of area risks. Concurrently, random noisy networks and dynamic exploration techniques encourage the agent to explore unknown areas in the environment, thereby improving sampling and optimizing strategies for bypassing complex obstacles. The study constructed multiple grid simulation scenarios based on real-world rescue operations in major urban flood disasters. These scenarios included uncertain risk values for all passable areas and an increased presence of complex elements, such as narrow passages, C-shaped barriers, and jagged paths, significantly raising the challenge of path planning. The comparative analysis demonstrated that only the proposed algorithm could bypass all obstacles and plan the optimal rescue path across nine scenarios. This research advances the theoretical progress for urban flood rescue path planning by extending the scale of scenarios to unprecedented levels. It also develops RL mechanisms adaptable to various extremely complex obstacles in path planning. Additionally, it provides methodological insights into artificial intelligence to enhance real-world risk management.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
跳跃的凌文完成签到 ,获得积分10
2秒前
残剑月发布了新的文献求助30
2秒前
2秒前
3秒前
HeatherMI完成签到 ,获得积分10
3秒前
超爱芒果完成签到,获得积分10
3秒前
轻松猫咪完成签到,获得积分20
4秒前
4秒前
SciGPT应助激动的项链采纳,获得10
6秒前
夏xx完成签到 ,获得积分10
6秒前
八轩发布了新的文献求助10
9秒前
彭于晏应助hourt2395采纳,获得30
10秒前
传奇3应助风雨无阻采纳,获得10
11秒前
samhainsuuun完成签到,获得积分10
12秒前
pp完成签到,获得积分10
12秒前
14秒前
量子星尘发布了新的文献求助10
14秒前
清飏应助zhuzhu采纳,获得10
14秒前
惊鸿一面发布了新的文献求助10
14秒前
17秒前
今后应助唠叨的向日葵采纳,获得10
18秒前
18秒前
19秒前
深水鱼发布了新的文献求助20
19秒前
Joy完成签到 ,获得积分10
20秒前
20秒前
22秒前
风雨无阻发布了新的文献求助10
23秒前
24秒前
24秒前
hourt2395发布了新的文献求助30
25秒前
甜甜圈完成签到,获得积分10
25秒前
悠南完成签到 ,获得积分10
25秒前
asdfg完成签到,获得积分10
25秒前
沉默水瑶发布了新的文献求助30
25秒前
26秒前
CipherSage应助wuxunxun2015采纳,获得10
26秒前
里维发布了新的文献求助10
27秒前
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Process Plant Design for Chemical Engineers 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Signals, Systems, and Signal Processing 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5613426
求助须知:如何正确求助?哪些是违规求助? 4698635
关于积分的说明 14898394
捐赠科研通 4736224
什么是DOI,文献DOI怎么找? 2547047
邀请新用户注册赠送积分活动 1511004
关于科研通互助平台的介绍 1473546