Rescue path planning for urban flood: A deep reinforcement learning–based approach

强化学习 运动规划 计算机科学 洪水(心理学) 大洪水 路径(计算) 风险分析(工程) 运筹学 人工智能 工程类 地理 业务 心理学 考古 机器人 心理治疗师 程序设计语言
作者
Xiaoyan Li,Xia Wang
出处
期刊:Risk Analysis [Wiley]
标识
DOI:10.1111/risa.17599
摘要

Urban flooding is among the costliest natural disasters worldwide. Timely and effective rescue path planning is crucial for minimizing loss of life and property. However, current research on path planning often fails to adequately consider the need to assess area risk uncertainties and bypass complex obstacles in flood rescue scenarios, presenting significant challenges for developing optimal rescue paths. This study proposes a deep reinforcement learning (RL) algorithm incorporating four main mechanisms to address these issues. Dual-priority experience replays and backtrack punishment mechanisms enhance the precise estimation of area risks. Concurrently, random noisy networks and dynamic exploration techniques encourage the agent to explore unknown areas in the environment, thereby improving sampling and optimizing strategies for bypassing complex obstacles. The study constructed multiple grid simulation scenarios based on real-world rescue operations in major urban flood disasters. These scenarios included uncertain risk values for all passable areas and an increased presence of complex elements, such as narrow passages, C-shaped barriers, and jagged paths, significantly raising the challenge of path planning. The comparative analysis demonstrated that only the proposed algorithm could bypass all obstacles and plan the optimal rescue path across nine scenarios. This research advances the theoretical progress for urban flood rescue path planning by extending the scale of scenarios to unprecedented levels. It also develops RL mechanisms adaptable to various extremely complex obstacles in path planning. Additionally, it provides methodological insights into artificial intelligence to enhance real-world risk management.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
guangweiyan完成签到 ,获得积分10
2秒前
chenwang发布了新的文献求助10
2秒前
3秒前
曾峥完成签到,获得积分10
3秒前
斯文败类应助洁净的士晋采纳,获得10
3秒前
Stargazings发布了新的文献求助10
3秒前
nianlu完成签到,获得积分10
4秒前
略略略发布了新的文献求助10
4秒前
今后应助科研狗采纳,获得10
5秒前
轩辕山槐完成签到,获得积分10
5秒前
CodeCraft应助冬瑶采纳,获得10
6秒前
7秒前
Ustinian完成签到,获得积分10
8秒前
jzt12138发布了新的文献求助10
8秒前
飘逸宛丝完成签到,获得积分10
8秒前
李健的粉丝团团长应助HJX采纳,获得10
8秒前
LLLnna发布了新的文献求助10
9秒前
Stargazings完成签到,获得积分10
10秒前
快快快快快快快快快完成签到 ,获得积分10
10秒前
yolo完成签到,获得积分10
10秒前
y1439938345发布了新的文献求助10
11秒前
11秒前
cloud发布了新的文献求助10
12秒前
12秒前
慕青应助科研通管家采纳,获得10
13秒前
13秒前
13秒前
传奇3应助科研通管家采纳,获得10
13秒前
13秒前
量子星尘发布了新的文献求助30
13秒前
慕青应助科研通管家采纳,获得10
13秒前
13秒前
香蕉觅云应助科研通管家采纳,获得10
13秒前
13秒前
传奇3应助科研通管家采纳,获得10
13秒前
13秒前
Orange应助科研通管家采纳,获得10
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5736061
求助须知:如何正确求助?哪些是违规求助? 5364012
关于积分的说明 15332114
捐赠科研通 4880090
什么是DOI,文献DOI怎么找? 2622504
邀请新用户注册赠送积分活动 1571528
关于科研通互助平台的介绍 1528348