Rescue path planning for urban flood: A deep reinforcement learning–based approach

强化学习 运动规划 计算机科学 洪水(心理学) 大洪水 路径(计算) 风险分析(工程) 运筹学 人工智能 工程类 地理 业务 心理学 考古 机器人 心理治疗师 程序设计语言
作者
Xiaoyan Li,Xia Wang
出处
期刊:Risk Analysis [Wiley]
标识
DOI:10.1111/risa.17599
摘要

Urban flooding is among the costliest natural disasters worldwide. Timely and effective rescue path planning is crucial for minimizing loss of life and property. However, current research on path planning often fails to adequately consider the need to assess area risk uncertainties and bypass complex obstacles in flood rescue scenarios, presenting significant challenges for developing optimal rescue paths. This study proposes a deep reinforcement learning (RL) algorithm incorporating four main mechanisms to address these issues. Dual-priority experience replays and backtrack punishment mechanisms enhance the precise estimation of area risks. Concurrently, random noisy networks and dynamic exploration techniques encourage the agent to explore unknown areas in the environment, thereby improving sampling and optimizing strategies for bypassing complex obstacles. The study constructed multiple grid simulation scenarios based on real-world rescue operations in major urban flood disasters. These scenarios included uncertain risk values for all passable areas and an increased presence of complex elements, such as narrow passages, C-shaped barriers, and jagged paths, significantly raising the challenge of path planning. The comparative analysis demonstrated that only the proposed algorithm could bypass all obstacles and plan the optimal rescue path across nine scenarios. This research advances the theoretical progress for urban flood rescue path planning by extending the scale of scenarios to unprecedented levels. It also develops RL mechanisms adaptable to various extremely complex obstacles in path planning. Additionally, it provides methodological insights into artificial intelligence to enhance real-world risk management.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
忧心的碧发布了新的文献求助10
刚刚
量子星尘发布了新的文献求助10
刚刚
长生完成签到,获得积分10
刚刚
沉静的雨真完成签到,获得积分10
1秒前
1秒前
2秒前
3秒前
4秒前
orixero应助欢呼凝冬采纳,获得10
4秒前
诗乃发布了新的文献求助10
4秒前
十一发布了新的文献求助10
4秒前
5秒前
qll完成签到,获得积分10
5秒前
傅荣轩完成签到,获得积分10
5秒前
7秒前
刻苦黎云完成签到,获得积分10
7秒前
7秒前
活力立诚完成签到,获得积分10
7秒前
8秒前
8秒前
NANI发布了新的文献求助10
9秒前
flippedaaa完成签到 ,获得积分10
10秒前
hailan发布了新的文献求助10
10秒前
朴实迎梅发布了新的文献求助10
10秒前
在水一方应助凡凡采纳,获得10
10秒前
忧心的碧完成签到,获得积分20
11秒前
11秒前
优雅的废完成签到,获得积分10
12秒前
FashionBoy应助optics1992采纳,获得10
13秒前
13秒前
等待的龙猫完成签到,获得积分10
13秒前
tanc完成签到,获得积分10
13秒前
13秒前
高高天抒完成签到,获得积分10
14秒前
英俊的铭应助zz采纳,获得10
14秒前
14秒前
ENG发布了新的文献求助10
14秒前
15秒前
Azure完成签到,获得积分10
15秒前
廿二发布了新的文献求助30
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
从k到英国情人 1700
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5773892
求助须知:如何正确求助?哪些是违规求助? 5614543
关于积分的说明 15433335
捐赠科研通 4906309
什么是DOI,文献DOI怎么找? 2640191
邀请新用户注册赠送积分活动 1588031
关于科研通互助平台的介绍 1543027