Rescue path planning for urban flood: A deep reinforcement learning–based approach

强化学习 运动规划 计算机科学 洪水(心理学) 大洪水 路径(计算) 风险分析(工程) 运筹学 人工智能 工程类 地理 业务 机器人 考古 程序设计语言 心理治疗师 心理学
作者
Xiaoyan Li,Xia Wang
出处
期刊:Risk Analysis [Wiley]
标识
DOI:10.1111/risa.17599
摘要

Urban flooding is among the costliest natural disasters worldwide. Timely and effective rescue path planning is crucial for minimizing loss of life and property. However, current research on path planning often fails to adequately consider the need to assess area risk uncertainties and bypass complex obstacles in flood rescue scenarios, presenting significant challenges for developing optimal rescue paths. This study proposes a deep reinforcement learning (RL) algorithm incorporating four main mechanisms to address these issues. Dual-priority experience replays and backtrack punishment mechanisms enhance the precise estimation of area risks. Concurrently, random noisy networks and dynamic exploration techniques encourage the agent to explore unknown areas in the environment, thereby improving sampling and optimizing strategies for bypassing complex obstacles. The study constructed multiple grid simulation scenarios based on real-world rescue operations in major urban flood disasters. These scenarios included uncertain risk values for all passable areas and an increased presence of complex elements, such as narrow passages, C-shaped barriers, and jagged paths, significantly raising the challenge of path planning. The comparative analysis demonstrated that only the proposed algorithm could bypass all obstacles and plan the optimal rescue path across nine scenarios. This research advances the theoretical progress for urban flood rescue path planning by extending the scale of scenarios to unprecedented levels. It also develops RL mechanisms adaptable to various extremely complex obstacles in path planning. Additionally, it provides methodological insights into artificial intelligence to enhance real-world risk management.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小王完成签到 ,获得积分10
2秒前
sun发布了新的文献求助10
2秒前
墨兮发布了新的文献求助10
6秒前
joey发布了新的文献求助10
6秒前
7秒前
7秒前
坚定岂愈发布了新的文献求助10
8秒前
8秒前
混子发布了新的文献求助50
9秒前
10秒前
熠迩发布了新的文献求助10
11秒前
11秒前
勤奋的道天完成签到,获得积分20
13秒前
14秒前
科研通AI2S应助YYY采纳,获得10
14秒前
NexusExplorer应助科研通管家采纳,获得10
15秒前
慕青应助科研通管家采纳,获得10
15秒前
所所应助科研通管家采纳,获得10
15秒前
桐桐应助科研通管家采纳,获得10
15秒前
bkagyin应助科研通管家采纳,获得10
15秒前
大清发布了新的文献求助10
15秒前
所所应助科研通管家采纳,获得10
16秒前
丘比特应助科研通管家采纳,获得10
16秒前
深情安青应助科研通管家采纳,获得10
16秒前
SciGPT应助科研通管家采纳,获得10
16秒前
无花果应助科研通管家采纳,获得10
16秒前
赘婿应助科研通管家采纳,获得10
16秒前
英俊的铭应助科研通管家采纳,获得10
16秒前
17秒前
17秒前
19秒前
yyyyyy发布了新的文献求助10
19秒前
执着翠芙发布了新的文献求助10
19秒前
li完成签到,获得积分10
20秒前
22秒前
22秒前
英勇的红酒完成签到 ,获得积分10
22秒前
慕暖完成签到,获得积分10
23秒前
wanfeng发布了新的文献求助10
23秒前
23秒前
高分求助中
中国国际图书贸易总公司40周年纪念文集 大事记1949-1987 2000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
草地生态学 880
Threaded Harmony: A Sustainable Approach to Fashion 799
Basic Modern Theory of Linear Complex Analytic 𝑞-Difference Equations 510
Queer Politics in Times of New Authoritarianisms: Popular Culture in South Asia 500
Livre et militantisme : La Cité éditeur 1958-1967 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3058813
求助须知:如何正确求助?哪些是违规求助? 2714822
关于积分的说明 7442467
捐赠科研通 2360145
什么是DOI,文献DOI怎么找? 1250625
科研通“疑难数据库(出版商)”最低求助积分说明 607487
版权声明 596432