Human pose estimation based on frequency domain and attention module

计算机科学 姿势 频域 人工智能 估计 领域(数学分析) 计算机视觉 模式识别(心理学) 数学 管理 经济 数学分析
作者
Shuren Zhou,Xinlan Duan,Jiarui Zhou
出处
期刊:Neurocomputing [Elsevier BV]
卷期号:604: 128318-128318 被引量:1
标识
DOI:10.1016/j.neucom.2024.128318
摘要

Aiming to address the problems of high computing costs and limited local receptive fields in existing human pose estimation methods, this study proposes a novel framework for human pose estimation called "Frequency Domain and Attention Pose Estimation" (FDAPose). By integrating high-resolution features, Fast Fourier Transform (FFT), and attention modules, FDAPose offers a new approach to human pose estimation. This framework improves the accuracy of human pose estimation while reducing computational costs. We introduce the Depthwise ECA Block (DEBlock) and the Residual ECA Block (REBlock) into our backbone network. These modules effectively reduce the number of model parameters and preserve the high-fidelity feature extraction necessary for accurately capturing the spatial relationships and details in human body postures. Additionally, the introduction of the Global Context Coordinate Attention(GCCA) module enhances the model's utilization of contextual information, especially when dealing with occluded and complex backgrounds. Our unique contribution is the integration of spatial features extracted at various stages with the frequency domain information, facilitated by the FFT technique. This approach enhances the model's ability to capture long-distance dependencies within the image, leading to improved accuracy in pose estimation. The model achieves an average precision of 78.0% and 89.6% on the COCO 2017 and MPII datasets, respectively. This study not only improves the accuracy of human pose estimation but also introduces new research avenues to the field by integrating frequency domain and spatial domain information.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
林子青发布了新的文献求助10
1秒前
Sophie_W完成签到,获得积分10
1秒前
ggdio发布了新的文献求助10
2秒前
NexusExplorer应助娟子采纳,获得10
3秒前
4秒前
ty发布了新的文献求助20
4秒前
心灵美慕蕊完成签到,获得积分10
6秒前
香蕉觅云应助棋士采纳,获得10
6秒前
miaomiao发布了新的文献求助10
6秒前
8秒前
Arjun完成签到,获得积分10
10秒前
哈哈发布了新的文献求助20
11秒前
12秒前
13秒前
GXY完成签到,获得积分10
13秒前
14秒前
orixero应助小陈爱涂六神采纳,获得10
14秒前
15秒前
17秒前
Kenzonvay发布了新的文献求助10
18秒前
好柿豆花生完成签到,获得积分10
18秒前
酷波er应助emilybei采纳,获得10
18秒前
棋士发布了新的文献求助10
19秒前
Ben完成签到,获得积分10
20秒前
21秒前
英姑应助科研通管家采纳,获得10
21秒前
coolkid应助科研通管家采纳,获得10
21秒前
研友_VZG7GZ应助科研通管家采纳,获得10
21秒前
彭于晏应助科研通管家采纳,获得10
21秒前
无花果应助科研通管家采纳,获得10
21秒前
21秒前
田様应助科研通管家采纳,获得10
21秒前
21秒前
虫虫完成签到,获得积分10
23秒前
24秒前
小马头儿完成签到 ,获得积分10
24秒前
LO7pM2应助puyehwu采纳,获得10
24秒前
娟子发布了新的文献求助10
25秒前
26秒前
26秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951098
求助须知:如何正确求助?哪些是违规求助? 3496471
关于积分的说明 11082384
捐赠科研通 3226938
什么是DOI,文献DOI怎么找? 1784076
邀请新用户注册赠送积分活动 868165
科研通“疑难数据库(出版商)”最低求助积分说明 801069