败血症
医学
感染性休克
水肿
发病机制
一氧化氮
缓激肽
内科学
生物信息学
重症监护医学
受体
生物
标识
DOI:10.1016/j.yjmcc.2024.08.003
摘要
Sepsis-induced myocardial dysfunction (SIMD), also known as sepsis-induced cardiomyopathy (SICM), is linked to significantly increased mortality. Despite its clinical importance, effective therapies for SIMD remain elusive, largely due to an incomplete understanding of its pathogenesis. Over the past five decades, research involving both animal models and human studies has highlighted several pathogenic mechanisms of SICM, yet many aspects remain unexplored. Initially thought to be primarily driven by inflammatory cytokines, current research indicates that these alone are insufficient for the development of cardiac dysfunction. Recent studies have brought attention to additional mechanisms, including excessive nitric oxide production, mitochondrial dysfunction, and disturbances in calcium homeostasis, as contributing factors in SICM. Emerging clinical evidence has highlighted the significant role of myocardial edema in the pathogenesis of SICM, particularly its association with cardiac remodeling in septic shock patients. This review synthesizes our current understanding of SIMD/SICM, focusing on myocardial edema's contribution to cardiac dysfunction and the critical role of the bradykinin receptor B1 (B1R) in altering myocardial microvascular permeability, a potential key player in myocardial edema development during sepsis. Additionally, this review briefly summarizes existing therapeutic strategies and their challenges and explores future research directions. It emphasizes the need for a deeper understanding of SICM to develop more effective treatments.
科研通智能强力驱动
Strongly Powered by AbleSci AI