A novel digital twin strategy to enable the translation of evidence from randomized control trials to new populations

医学 随机对照试验 翻译(生物学) 内科学 遗传学 生物 信使核糖核酸 基因
作者
Phyllis Thangaraj,Sumukh Vasisht Shankar,Evangelos K. Oikonomou,Rohan Khera
出处
期刊:European Heart Journal [Oxford University Press]
卷期号:45 (Supplement_1)
标识
DOI:10.1093/eurheartj/ehae666.3502
摘要

Abstract Background Randomized clinical trials (RCTs) are essential to guide medical practice; however, their generalizability to a given population is often uncertain. Between the SPRINT and ACCORD trials, only SPRINT found a significant reduction in major cardiovascular events (MACE) with intensive blood pressure control, but ACCORD did not, without clear evidence of whether this reflected differences in enrolled patients. Purpose To use a novel RCT digital twin-based approach to demonstrate the translation of an RCT to a different population, leveraging the differences in populations and treatment effects in SPRINT and ACCORD. Methods We developed a statistically informed Generative Adversarial Network (GAN) model that leverages relationships between covariates and outcomes using Directed Acyclic Graphs (DAGs). This model can generate a digital twin of an RCT (RCT-Twin) conditioned on covariate distributions from a second patient population while maintaining these relationships (Fig A). Using this, we generated the (i) RCT-Twin of SPRINT, which was conditioned on the 10 most disparate covariates drawn from ACCORD, and (ii) an RCT-Twin of ACCORD conditioned on SPRINT. To demonstrate treatment effect estimates of each RCT conditioned on the other RCT’s patient population, we evaluated the cardiovascular event-free survival of 10 iterations of these cross-trained RCT-Twins against the original trials. Results Using 9361 SPRINT participants and conditioning on 4733 ACCORD participants, we generated 10 ACCORD-conditioned SPRINT-Twin datasets. We confirmed that the RCT-Twins were consistently balanced between treatment and controls across all measured covariates (mean absolute standardized mean difference (MASMD) 0.019, SD 0.018), as expected for real RCTs. We also confirmed that covariates of the ACCORD-conditioned SPRINT-Twins were closer to ACCORD than SPRINT (MASMD 0.0082 vs 0.46, SD 0.016 vs 0.20), suggestive of successful conditioning. Most importantly, across iterations, ACCORD-conditioned SPRINT-Twin datasets reproduced the overall non-significant effect size seen in ACCORD (5-year MACE hazard ratio (95% confidence interval) of 0.88 (0.73-1.06) in ACCORD vs median 0.87 (0.68-1.13) in the ACCORD-conditioned SPRINT-Twins, Fig B), while the SPRINT-conditioned ACCORD-Twin datasets reproduced the significant effect size seen in SPRINT (0.75 (0.64-0.89) vs median 0.79 (0.72-0.86) in the SPRINT-conditioned ACCORD-Twins, Fig C). Conclusions Our novel conditioned digital twin approach simulates RCT-derived effects in different patient populations by translating these effects to the covariate distributions of the patients. This key methodological advance may enable the direct translation of RCT-derived effects into disparate patient populations and may enable causal inference in real-world settings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Agan发布了新的文献求助30
1秒前
wanci应助axl采纳,获得10
1秒前
leng完成签到,获得积分10
2秒前
梅啦啦完成签到 ,获得积分10
2秒前
nhw完成签到,获得积分10
3秒前
王太白完成签到,获得积分10
3秒前
喵喵盖被完成签到,获得积分10
3秒前
无心的青槐完成签到,获得积分10
3秒前
crains完成签到 ,获得积分10
4秒前
myf发布了新的文献求助20
4秒前
yao完成签到,获得积分10
5秒前
科目三应助yin采纳,获得10
5秒前
5秒前
zzyl完成签到,获得积分10
6秒前
续续完成签到,获得积分10
6秒前
大力的诗蕾完成签到 ,获得积分10
6秒前
shiqi完成签到,获得积分10
7秒前
7秒前
7秒前
感性的夜玉完成签到,获得积分10
7秒前
ice完成签到 ,获得积分10
8秒前
狒狒公主完成签到,获得积分10
8秒前
Dalia完成签到,获得积分10
8秒前
神勇咖啡豆应助prokechery采纳,获得10
9秒前
tongxiehou1完成签到,获得积分10
9秒前
琉璃岁月发布了新的文献求助10
9秒前
丰知然应助小雷要学习采纳,获得10
9秒前
矛尾复虾虎鱼完成签到,获得积分10
10秒前
Pan完成签到,获得积分10
10秒前
axl完成签到,获得积分10
10秒前
yoyo发布了新的文献求助10
11秒前
彳亍1117应助、、采纳,获得10
11秒前
夕荀完成签到,获得积分10
12秒前
明芷蝶完成签到,获得积分10
12秒前
怡然雨雪完成签到,获得积分10
12秒前
ww发布了新的文献求助10
12秒前
jiexika发布了新的文献求助10
12秒前
烟花应助tanjuan采纳,获得10
13秒前
xxx完成签到 ,获得积分10
13秒前
葫芦娃大铁锤完成签到 ,获得积分10
13秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
MATLAB在传热学例题中的应用 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3303593
求助须知:如何正确求助?哪些是违规求助? 2937893
关于积分的说明 8484865
捐赠科研通 2611823
什么是DOI,文献DOI怎么找? 1426334
科研通“疑难数据库(出版商)”最低求助积分说明 662567
邀请新用户注册赠送积分活动 647118