3D-Printed Flexible Polyacrylamide/Alginate Gel Polymer Electrolyte for Zinc-Ion Batteries

材料科学 电解质 聚丙烯酰胺 聚合物 化学工程 离子 聚合物电解质 无机化学 复合材料 高分子化学 冶金 电极 有机化学 离子电导率 化学 物理化学 工程类
作者
Napassorn Wongduangpa,Nutthapong Poompiew,Chuanchom Aumnate,Pranut Potiyaraj
出处
期刊:Materials Science Forum 卷期号:1128: 23-28
标识
DOI:10.4028/p-0d5jym
摘要

Flexible and wearable electronics are increasingly popular and utilized in various forms. Batteries have become essential as an energy source for wearable electronics. To meet demands of such electronics, these batteries must remain flexible, lightweight, possess good electrochemical performance, customizable shape, and ensure safety. Zinc-ion batteries (ZIBs) have emerged as a promising energy source for these applications. However, ZIBs encounter challenges due to the lack of flexible electrolytes. Polyacrylamide (PAM) is a polymer widely used as gel polymer electrolytes (GPEs) owing to its versatile electrical conductivity and excellent flexibility. However, PAM alone lacks the mechanical strength required to support flexible and wearable electronics adequately. To address this limitation, alginate (Alg), a polysaccharide with good compatibility with PAM, is incorporated in varying concentrations (0-3 %wt.) to form interpenetrating networks (IPN) hydrogels, with a chemical network of PAM and a physical network of alginate to enhance the overall mechanical properties. Following this, the 3D-printed PAM/Alg hydrogels are immerged in a 2M ZnSO 4 electrolyte to create PAM/Alg gel polymer electrolytes (PAM/Alg-GPEs). This process significantly improves the mechanical properties of PAM/Alg-GPEs. Subsequently, the ionic conductivity of these 3D-printed PAM/Alg-GPEs is evaluated using electrochemical impedance spectroscopy (EIS). The results demonstrate that PAM/Alg-GPEs exhibit the desired flexibility along with sufficient electrochemical performance, making them promising candidates for use as wearable electrolytes in zinc-ion batteries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
零下七度完成签到,获得积分10
2秒前
壮观的寒松应助王梦凡采纳,获得10
3秒前
小佟完成签到,获得积分10
3秒前
3秒前
3秒前
xs驳回了烟花应助
3秒前
英勇无声发布了新的文献求助10
4秒前
一号发布了新的文献求助10
4秒前
阿迦发布了新的文献求助10
5秒前
6秒前
hunajx完成签到,获得积分10
6秒前
徐风年完成签到,获得积分10
6秒前
7秒前
7秒前
7秒前
泥娃娃完成签到,获得积分10
7秒前
量子星尘发布了新的文献求助50
7秒前
念九完成签到,获得积分20
8秒前
科研通AI5应助恩恩采纳,获得10
8秒前
9秒前
10秒前
11秒前
汉堡包应助Lavender采纳,获得10
11秒前
端庄涫完成签到,获得积分20
12秒前
搞科研的小李同学完成签到 ,获得积分10
12秒前
ddingk发布了新的文献求助10
12秒前
12秒前
顺利皮蛋完成签到,获得积分0
13秒前
13秒前
14秒前
14秒前
希希完成签到 ,获得积分10
15秒前
念九发布了新的文献求助10
15秒前
安安发布了新的文献求助10
15秒前
极辰完成签到 ,获得积分10
16秒前
16秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
SOFT MATTER SERIES Volume 22 Soft Matter in Foods 1000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Storie e culture della televisione 500
Selected research on camelid physiology and nutrition 500
《2023南京市住宿行业发展报告》 500
Food Microbiology - An Introduction (5th Edition) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4883986
求助须知:如何正确求助?哪些是违规求助? 4169368
关于积分的说明 12937216
捐赠科研通 3929699
什么是DOI,文献DOI怎么找? 2156250
邀请新用户注册赠送积分活动 1174667
关于科研通互助平台的介绍 1079450