3D-Printed Flexible Polyacrylamide/Alginate Gel Polymer Electrolyte for Zinc-Ion Batteries

材料科学 电解质 聚丙烯酰胺 聚合物 化学工程 离子 聚合物电解质 无机化学 复合材料 高分子化学 冶金 电极 有机化学 离子电导率 化学 物理化学 工程类
作者
Napassorn Wongduangpa,Nutthapong Poompiew,Chuanchom Aumnate,Pranut Potiyaraj
出处
期刊:Materials Science Forum 卷期号:1128: 23-28
标识
DOI:10.4028/p-0d5jym
摘要

Flexible and wearable electronics are increasingly popular and utilized in various forms. Batteries have become essential as an energy source for wearable electronics. To meet demands of such electronics, these batteries must remain flexible, lightweight, possess good electrochemical performance, customizable shape, and ensure safety. Zinc-ion batteries (ZIBs) have emerged as a promising energy source for these applications. However, ZIBs encounter challenges due to the lack of flexible electrolytes. Polyacrylamide (PAM) is a polymer widely used as gel polymer electrolytes (GPEs) owing to its versatile electrical conductivity and excellent flexibility. However, PAM alone lacks the mechanical strength required to support flexible and wearable electronics adequately. To address this limitation, alginate (Alg), a polysaccharide with good compatibility with PAM, is incorporated in varying concentrations (0-3 %wt.) to form interpenetrating networks (IPN) hydrogels, with a chemical network of PAM and a physical network of alginate to enhance the overall mechanical properties. Following this, the 3D-printed PAM/Alg hydrogels are immerged in a 2M ZnSO 4 electrolyte to create PAM/Alg gel polymer electrolytes (PAM/Alg-GPEs). This process significantly improves the mechanical properties of PAM/Alg-GPEs. Subsequently, the ionic conductivity of these 3D-printed PAM/Alg-GPEs is evaluated using electrochemical impedance spectroscopy (EIS). The results demonstrate that PAM/Alg-GPEs exhibit the desired flexibility along with sufficient electrochemical performance, making them promising candidates for use as wearable electrolytes in zinc-ion batteries.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
鱼鱼发布了新的文献求助10
刚刚
刚刚
马户牙完成签到,获得积分10
2秒前
108实验室发布了新的文献求助10
2秒前
张萌发布了新的文献求助10
2秒前
2秒前
1bxx发布了新的文献求助10
3秒前
zc发布了新的文献求助10
3秒前
3秒前
3秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
Lucas应助吕亚采纳,获得10
5秒前
哦耶zyy完成签到,获得积分20
5秒前
瑶瑶完成签到,获得积分20
5秒前
6秒前
6秒前
6秒前
6秒前
正直从阳发布了新的文献求助10
6秒前
在水一方应助北回归线采纳,获得10
7秒前
冰姗完成签到,获得积分10
7秒前
王王发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助10
7秒前
aobacae发布了新的文献求助10
8秒前
8秒前
108实验室完成签到,获得积分20
9秒前
llzr完成签到,获得积分10
9秒前
嘿哟完成签到,获得积分10
9秒前
白沙湾完成签到,获得积分10
10秒前
10秒前
哦耶zyy发布了新的文献求助10
10秒前
往好处想发布了新的文献求助10
10秒前
思源应助1bxx采纳,获得10
10秒前
IDneverd完成签到,获得积分10
10秒前
dbq发布了新的文献求助10
10秒前
11秒前
研友_VZG7GZ应助争取少吃点采纳,获得10
11秒前
12秒前
111发布了新的文献求助10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5728114
求助须知:如何正确求助?哪些是违规求助? 5311529
关于积分的说明 15313202
捐赠科研通 4875379
什么是DOI,文献DOI怎么找? 2618794
邀请新用户注册赠送积分活动 1568399
关于科研通互助平台的介绍 1525035