3D-Printed Flexible Polyacrylamide/Alginate Gel Polymer Electrolyte for Zinc-Ion Batteries

材料科学 电解质 聚丙烯酰胺 聚合物 化学工程 离子 聚合物电解质 无机化学 复合材料 高分子化学 冶金 电极 有机化学 离子电导率 化学 物理化学 工程类
作者
Napassorn Wongduangpa,Nutthapong Poompiew,Chuanchom Aumnate,Pranut Potiyaraj
出处
期刊:Materials Science Forum 卷期号:1128: 23-28
标识
DOI:10.4028/p-0d5jym
摘要

Flexible and wearable electronics are increasingly popular and utilized in various forms. Batteries have become essential as an energy source for wearable electronics. To meet demands of such electronics, these batteries must remain flexible, lightweight, possess good electrochemical performance, customizable shape, and ensure safety. Zinc-ion batteries (ZIBs) have emerged as a promising energy source for these applications. However, ZIBs encounter challenges due to the lack of flexible electrolytes. Polyacrylamide (PAM) is a polymer widely used as gel polymer electrolytes (GPEs) owing to its versatile electrical conductivity and excellent flexibility. However, PAM alone lacks the mechanical strength required to support flexible and wearable electronics adequately. To address this limitation, alginate (Alg), a polysaccharide with good compatibility with PAM, is incorporated in varying concentrations (0-3 %wt.) to form interpenetrating networks (IPN) hydrogels, with a chemical network of PAM and a physical network of alginate to enhance the overall mechanical properties. Following this, the 3D-printed PAM/Alg hydrogels are immerged in a 2M ZnSO 4 electrolyte to create PAM/Alg gel polymer electrolytes (PAM/Alg-GPEs). This process significantly improves the mechanical properties of PAM/Alg-GPEs. Subsequently, the ionic conductivity of these 3D-printed PAM/Alg-GPEs is evaluated using electrochemical impedance spectroscopy (EIS). The results demonstrate that PAM/Alg-GPEs exhibit the desired flexibility along with sufficient electrochemical performance, making them promising candidates for use as wearable electrolytes in zinc-ion batteries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
研友_VZG7GZ应助Rita采纳,获得10
1秒前
1秒前
Ava应助迷路的晓旋采纳,获得10
1秒前
小仙女完成签到 ,获得积分10
1秒前
1秒前
勤劳小懒虫给勤劳小懒虫的求助进行了留言
3秒前
蔡蔡完成签到,获得积分10
4秒前
33333发布了新的文献求助10
4秒前
4秒前
5秒前
6秒前
我在发布了新的文献求助10
6秒前
噔噔蹬完成签到 ,获得积分10
7秒前
辛未发布了新的文献求助10
7秒前
9秒前
田様应助黄思雯采纳,获得10
9秒前
Yyyyyy完成签到,获得积分10
10秒前
ltyuli发布了新的文献求助10
11秒前
嗯啊完成签到,获得积分10
11秒前
ML发布了新的文献求助10
13秒前
13秒前
14秒前
张洪旗完成签到,获得积分10
15秒前
浮游应助科研通管家采纳,获得10
15秒前
酷波er应助科研通管家采纳,获得10
15秒前
bkagyin应助科研通管家采纳,获得10
15秒前
15秒前
完美世界应助科研通管家采纳,获得10
15秒前
科研通AI2S应助科研通管家采纳,获得10
15秒前
JamesPei应助科研通管家采纳,获得10
15秒前
popvich应助科研通管家采纳,获得20
16秒前
科研通AI5应助科研通管家采纳,获得10
16秒前
浮游应助科研通管家采纳,获得10
16秒前
情怀应助科研通管家采纳,获得10
16秒前
16秒前
CipherSage应助科研通管家采纳,获得10
16秒前
酷波er应助科研通管家采纳,获得10
16秒前
浮游应助科研通管家采纳,获得10
16秒前
上官若男应助科研通管家采纳,获得10
16秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5207720
求助须知:如何正确求助?哪些是违规求助? 4385540
关于积分的说明 13657472
捐赠科研通 4244234
什么是DOI,文献DOI怎么找? 2328722
邀请新用户注册赠送积分活动 1326380
关于科研通互助平台的介绍 1278543