Brain-inspired artificial intelligence research: A review

认知 认知科学 人工智能 人类智力 具身认知 机制(生物学) 计算机科学 感知 心理学 神经科学 哲学 认识论
作者
Guoyin Wang,Huanan Bao,Qun Liu,Tiangang Zhou,Si Wu,Tiejun Huang,Zhaofei Yu,CeWu Lu,Yihong Gong,Zhaoxiang Zhang,Sheng He
出处
期刊:Science China-technological Sciences [Springer Nature]
卷期号:67 (8): 2282-2296 被引量:2
标识
DOI:10.1007/s11431-024-2732-9
摘要

Artificial intelligence (AI) systems surpass certain human intelligence abilities in a statistical sense as a whole, but are not yet the true realization of these human intelligence abilities and behaviors. There are differences, and even contradictions, between the cognition and behavior of AI systems and humans. With the goal of achieving general AI, this study contains a review of the role of cognitive science in inspiring the development of the three mainstream academic branches of AI based on the three-layer framework proposed by David Marr, and the limitations of the current development of AI are explored and analyzed. The differences and inconsistencies between the cognition mechanisms of the human brain and the computation mechanisms of AI systems are analyzed. They are found to be the cause of the differences and contradictions between the cognition and behavior of AI systems and humans. Additionally, eight important research directions and their scientific issues that need to focus on brain-inspired AI research are proposed: highly imitated bionic information processing, a large-scale deep learning model that balances structure and function, multi-granularity joint problem solving bidirectionally driven by data and knowledge, AI models that simulate specific brain structures, a collaborative processing mechanism with the physical separation of perceptual processing and interpretive analysis, embodied intelligence that integrates the brain cognitive mechanism and AI computation mechanisms, intelligence simulation from individual intelligence to group intelligence (social intelligence), and AI-assisted brain cognitive intelligence.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sisi完成签到,获得积分10
刚刚
wxiao发布了新的文献求助10
1秒前
小赵发布了新的文献求助10
3秒前
852应助综述成精采纳,获得10
3秒前
3秒前
俭朴的可冥完成签到,获得积分10
4秒前
一一发布了新的文献求助10
6秒前
6秒前
master发布了新的文献求助10
6秒前
kaiserkkk完成签到,获得积分10
7秒前
情怀应助欧阳万仇采纳,获得10
8秒前
舒适的尔容完成签到,获得积分10
10秒前
wwww完成签到,获得积分10
10秒前
11秒前
Cc发布了新的文献求助10
11秒前
天天快乐应助lllzz采纳,获得10
13秒前
激昂的幻梦完成签到,获得积分10
15秒前
zong240221完成签到 ,获得积分10
16秒前
17秒前
弃医遛鸟登高而歌完成签到 ,获得积分10
17秒前
Siu发布了新的文献求助10
18秒前
MasterE发布了新的文献求助10
18秒前
18秒前
乐乐乐乐乐乐应助mj采纳,获得10
19秒前
寂川完成签到,获得积分20
19秒前
可爱的函函应助杨杨采纳,获得30
20秒前
20秒前
TIMF14完成签到,获得积分10
21秒前
搜集达人应助丛柳采纳,获得10
22秒前
zwy发布了新的文献求助10
23秒前
缺文献完成签到,获得积分10
24秒前
lou发布了新的文献求助80
24秒前
BCyu发布了新的文献求助10
26秒前
上官若男应助xzl采纳,获得10
26秒前
27秒前
cocolu应助mj采纳,获得10
28秒前
SYX完成签到 ,获得积分10
29秒前
29秒前
寂川发布了新的文献求助30
30秒前
布丁发布了新的文献求助10
30秒前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Zeitschrift für Orient-Archäologie 500
Smith-Purcell Radiation 500
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3343625
求助须知:如何正确求助?哪些是违规求助? 2970630
关于积分的说明 8644716
捐赠科研通 2650766
什么是DOI,文献DOI怎么找? 1451444
科研通“疑难数据库(出版商)”最低求助积分说明 672137
邀请新用户注册赠送积分活动 661569