数学
生物扩散
动力学(音乐)
Dirichlet分布
边界(拓扑)
流行病模型
Dirichlet边界条件
应用数学
数学分析
边值问题
统计物理学
物理
人口学
人口
声学
社会学
作者
Xiandong Lin,Qiru Wang
标识
DOI:10.1016/j.jde.2024.07.035
摘要
In this paper, we consider a spatial heterogeneous and temporal periodic nonlocal susceptible-infected-susceptible epidemic model with Dirichlet boundary conditions, where the total population is varying. We first study a principal eigenvalue problem for a time-periodic nonlocal dispersal operator and obtain the limiting profile of principal eigenvalue. Next, we establish the existence, uniqueness and stability of steady states of the model in terms of the basic reproduction ratio. Finally, we discuss the impacts of small diffusion rates on the persistence and extinction of the disease. We show the asymptotic profiles of the disease-free equilibrium, endemic equilibrium and basic reproduction ratio as the diffusion rate tends to zero.
科研通智能强力驱动
Strongly Powered by AbleSci AI