Comparing YOLOv8 and Mask R-CNN for instance segmentation in complex orchard environments

分割 果园 人工智能 计算机科学 模式识别(心理学) 计算机视觉 园艺 生物
作者
Ranjan Sapkota,Dawood Ahmed,Manoj Karkee
出处
期刊:Artificial intelligence in agriculture [Elsevier]
卷期号:13: 84-99 被引量:18
标识
DOI:10.1016/j.aiia.2024.07.001
摘要

Instance segmentation, an important image processing operation for automation in agriculture, is used to precisely delineate individual objects of interest within images, which provides foundational information for various automated or robotic tasks such as selective harvesting and precision pruning. This study compares the one-stage YOLOv8 and the two-stage Mask R-CNN machine learning models for instance segmentation under varying orchard conditions across two datasets. Dataset 1, collected in dormant season, includes images of dormant apple trees, which were used to train multi-object segmentation models delineating tree branches and trunks. Dataset 2, collected in the early growing season, includes images of apple tree canopies with green foliage and immature (green) apples (also called fruitlet), which were used to train single-object segmentation models delineating only immature green apples. The results showed that YOLOv8 performed better than Mask R-CNN, achieving good precision and near-perfect recall across both datasets at a confidence threshold of 0.5. Specifically, for Dataset 1, YOLOv8 achieved a precision of 0.90 and a recall of 0.95 for all classes. In comparison, Mask R-CNN demonstrated a precision of 0.81 and a recall of 0.81 for the same dataset. With Dataset 2, YOLOv8 achieved a precision of 0.93 and a recall of 0.97. Mask R-CNN, in this single-class scenario, achieved a precision of 0.85 and a recall of 0.88. Additionally, the inference times for YOLOv8 were 10.9 ms for multi-class segmentation (Dataset 1) and 7.8 ms for single-class segmentation (Dataset 2), compared to 15.6 ms and 12.8 ms achieved by Mask R-CNN's, respectively. These findings show YOLOv8's superior accuracy and efficiency in machine learning applications compared to two-stage models, specifically Mask-R-CNN, which suggests its suitability in developing smart and automated orchard operations, particularly when real-time applications are necessary in such cases as robotic harvesting and robotic immature green fruit thinning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wintel完成签到,获得积分10
1秒前
如意的戒指完成签到 ,获得积分10
1秒前
三里墩头应助小爱采纳,获得10
1秒前
yang完成签到,获得积分10
2秒前
雪下卧眠完成签到,获得积分10
2秒前
恰饭完成签到,获得积分10
2秒前
2秒前
GEE完成签到 ,获得积分10
3秒前
赘婿应助DrW采纳,获得10
3秒前
zhangxiao发布了新的文献求助10
4秒前
shanage应助11采纳,获得10
4秒前
4秒前
jy完成签到,获得积分10
4秒前
维维逗奶完成签到,获得积分10
5秒前
激昂的南烟完成签到 ,获得积分10
5秒前
111完成签到 ,获得积分10
5秒前
8秒前
qiqiqi完成签到,获得积分10
8秒前
李健的小迷弟应助听雨采纳,获得10
9秒前
科研通AI2S应助冷静尔容采纳,获得10
9秒前
10秒前
李小鑫吖完成签到,获得积分10
11秒前
11秒前
可yi完成签到,获得积分10
11秒前
顺鑫完成签到 ,获得积分10
11秒前
范范778完成签到 ,获得积分10
11秒前
Akim应助LF采纳,获得10
11秒前
宁霸完成签到,获得积分0
11秒前
方羽应助didi采纳,获得100
12秒前
14秒前
CipherSage应助孙振亚采纳,获得10
14秒前
15秒前
梅思双完成签到,获得积分10
16秒前
朝气发布了新的文献求助10
16秒前
着急的尔安完成签到 ,获得积分10
16秒前
稳重香萱发布了新的文献求助10
16秒前
薄荷草莓糖完成签到,获得积分10
17秒前
Venus完成签到,获得积分10
17秒前
等等完成签到,获得积分10
17秒前
爆米花应助务实的手套采纳,获得10
18秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1000
Les Mantodea de Guyane 800
More activities for teaching positive psychology: A guide for instructors 700
Mantids of the euro-mediterranean area 700
Plate Tectonics 500
Igneous rocks and processes: a practical guide(第二版) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3402639
求助须知:如何正确求助?哪些是违规求助? 3009491
关于积分的说明 8837421
捐赠科研通 2696435
什么是DOI,文献DOI怎么找? 1477859
科研通“疑难数据库(出版商)”最低求助积分说明 683261
邀请新用户注册赠送积分活动 677002