DST-DETR: Image Dehazing RT-DETR for Safety Helmet Detection in Foggy Weather

计算机科学 能见度 稳健性(进化) 目标检测 实时计算 遥感 人工智能 模式识别(心理学) 气象学 生物化学 化学 物理 基因 地质学
作者
Ziyuan Liu,Chunxia Sun,Xiaopeng Wang
出处
期刊:Sensors [MDPI AG]
卷期号:24 (14): 4628-4628
标识
DOI:10.3390/s24144628
摘要

In foggy weather, outdoor safety helmet detection often suffers from low visibility and unclear objects, hindering optimal detector performance. Moreover, safety helmets typically appear as small objects at construction sites, prone to occlusion and difficult to distinguish from complex backgrounds, further exacerbating the detection challenge. Therefore, the real-time and precise detection of safety helmet usage among construction personnel, particularly in adverse weather conditions such as foggy weather, poses a significant challenge. To address this issue, this paper proposes the DST-DETR, a framework for foggy weather safety helmet detection. The DST-DETR framework comprises a dehazing module, PAOD-Net, and an object detection module, ST-DETR, for joint dehazing and detection. Initially, foggy images are restored within PAOD-Net, enhancing the AOD-Net model by introducing a novel convolutional module, PfConv, guided by the parameter-free average attention module (PfAAM). This module enables more focused attention on crucial features in lightweight models, therefore enhancing performance. Subsequently, the MS-SSIM + ℓ2 loss function is employed to bolster the model’s robustness, making it adaptable to scenes with intricate backgrounds and variable fog densities. Next, within the object detection module, the ST-DETR model is designed to address small objects. By refining the RT-DETR model, its capability to detect small objects in low-quality images is enhanced. The core of this approach lies in utilizing the variant ResNet-18 as the backbone to make the network lightweight without sacrificing accuracy, followed by effectively integrating the small-object layer into the improved BiFPN neck structure, resulting in CCFF-BiFPN-P2. Various experiments were conducted to qualitatively and quantitatively compare our method with several state-of-the-art approaches, demonstrating its superiority. The results validate that the DST-DETR algorithm is better suited for foggy safety helmet detection tasks in construction scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
slugger发布了新的文献求助10
刚刚
Xxxxxxx发布了新的文献求助10
刚刚
Gin发布了新的文献求助10
刚刚
顺利的尔槐完成签到,获得积分10
1秒前
1秒前
2秒前
JingP完成签到,获得积分10
2秒前
talpionchen完成签到,获得积分10
2秒前
静汉发布了新的文献求助10
3秒前
无为完成签到 ,获得积分10
3秒前
水草帽完成签到 ,获得积分10
4秒前
晨霭微凉完成签到,获得积分10
4秒前
slugger完成签到,获得积分20
4秒前
林非鹿完成签到 ,获得积分10
4秒前
4秒前
111发布了新的文献求助10
4秒前
4秒前
liudw完成签到,获得积分10
5秒前
ygs完成签到,获得积分10
5秒前
海洋完成签到,获得积分20
5秒前
红丽阿妹完成签到,获得积分10
6秒前
苏以祀发布了新的文献求助10
6秒前
xuxiangjin完成签到,获得积分10
6秒前
Amy完成签到,获得积分10
7秒前
dhjic完成签到 ,获得积分10
7秒前
oooy应助ntrip采纳,获得10
7秒前
xuxu完成签到,获得积分10
7秒前
深情安青应助吱哦周采纳,获得10
8秒前
az发布了新的文献求助10
8秒前
9秒前
9秒前
SciGPT应助小会采纳,获得10
9秒前
杨好圆完成签到,获得积分10
9秒前
梁朝伟应助静汉采纳,获得10
9秒前
脑洞疼应助exy采纳,获得10
10秒前
海洋发布了新的文献求助10
10秒前
Lucas应助zhihua采纳,获得10
11秒前
愉快的甜瓜完成签到,获得积分10
11秒前
晴晴发布了新的文献求助10
11秒前
水草帽完成签到 ,获得积分10
11秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Becoming: An Introduction to Jung's Concept of Individuation 600
Communist propaganda: a fact book, 1957-1958 500
Briefe aus Shanghai 1946‒1952 (Dokumente eines Kulturschocks) 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3167416
求助须知:如何正确求助?哪些是违规求助? 2818928
关于积分的说明 7923662
捐赠科研通 2478740
什么是DOI,文献DOI怎么找? 1320438
科研通“疑难数据库(出版商)”最低求助积分说明 632803
版权声明 602443