Meta-analysis identifies common gut microbiota associated with multiple sclerosis

肠道菌群 多发性硬化 人类遗传学 医学 生物信息学 计算生物学 生物 免疫学 遗传学 基因
作者
Qingqi Lin,Yair Dorsett,Ali Mirza,Helen Tremlett,Laura Piccio,Erin E. Longbrake,Siobhán Ní Choileáin,David A. Hafler,Laura M. Cox,Howard L. Weiner,Takashi Yamamura,Kun Chen,Yufeng Wu,Yanjiao Zhou
出处
期刊:Genome Medicine [Springer Nature]
卷期号:16 (1) 被引量:1
标识
DOI:10.1186/s13073-024-01364-x
摘要

Previous studies have identified a diverse group of microbial taxa that differ between patients with multiple sclerosis (MS) and the healthy population. However, interpreting findings on MS-associated microbiota is challenging, as there is no true consensus. It is unclear whether there is gut microbiota commonly altered in MS across studies. To answer this, we performed a meta-analysis based on the 16S rRNA gene sequencing data from seven geographically and technically diverse studies comprising a total of 524 adult subjects (257 MS and 267 healthy controls). Analysis was conducted for each individual study after reprocessing the data and also by combining all data together. The blocked Wilcoxon rank-sum test and linear mixed-effects regression were used to identify differences in microbial composition and diversity between MS and healthy controls. Network analysis was conducted to identify bacterial correlations. A leave-one-out sensitivity analysis was performed to ensure the robustness of the findings. The microbiome community structure was significantly different between studies. Re-analysis of data from individual studies revealed a lower relative abundance of Prevotella in MS across studies, compared to controls. Meta-analysis found that although alpha and beta diversity did not differ between MS and controls, a higher abundance of Actinomyces and a lower abundance of Faecalibacterium were reproducibly associated with MS. Additionally, network analysis revealed that the recognized negative Bacteroides-Prevotella correlation in controls was disrupted in patients with MS. Our meta-analysis identified common gut microbiota associated with MS across geographically and technically diverse studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SUPERH0T关注了科研通微信公众号
1秒前
zzj完成签到,获得积分10
1秒前
4秒前
6秒前
9秒前
英俊的铭应助lily采纳,获得30
9秒前
村长热爱美丽完成签到 ,获得积分10
12秒前
动听的续发布了新的文献求助10
13秒前
14秒前
18秒前
单薄雁菡完成签到,获得积分10
19秒前
特特雷珀萨努完成签到 ,获得积分10
19秒前
ffw1发布了新的文献求助20
22秒前
子墨完成签到,获得积分10
22秒前
梓萱完成签到,获得积分10
23秒前
LETHE发布了新的文献求助10
23秒前
夏伊发布了新的文献求助10
24秒前
fzhou完成签到 ,获得积分10
25秒前
麦田稻草人完成签到,获得积分10
27秒前
klandcy完成签到,获得积分10
27秒前
28秒前
汉堡包应助一724采纳,获得10
29秒前
30秒前
30秒前
BK1BK22完成签到 ,获得积分10
30秒前
Avery完成签到 ,获得积分10
31秒前
31秒前
31秒前
努力科研的小吴完成签到,获得积分10
33秒前
SCINEXUS应助王嘉尔采纳,获得20
33秒前
兴奋的从筠完成签到,获得积分10
34秒前
张先伟完成签到,获得积分10
34秒前
34秒前
zkzk54发布了新的文献求助10
34秒前
甜甜的紫丝完成签到 ,获得积分10
34秒前
35秒前
Shaylee发布了新的文献求助10
39秒前
40秒前
cxx完成签到 ,获得积分10
41秒前
41秒前
高分求助中
System in Systemic Functional Linguistics A System-based Theory of Language 1000
The Data Economy: Tools and Applications 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 700
Essentials of thematic analysis 700
Mantiden - Faszinierende Lauerjäger – Buch gebraucht kaufen 600
PraxisRatgeber Mantiden., faszinierende Lauerjäger. – Buch gebraucht kaufe 600
A Dissection Guide & Atlas to the Rabbit 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3118495
求助须知:如何正确求助?哪些是违规求助? 2768605
关于积分的说明 7697643
捐赠科研通 2424080
什么是DOI,文献DOI怎么找? 1287580
科研通“疑难数据库(出版商)”最低求助积分说明 620553
版权声明 599915