ZnNi2O4/WS2 Nanoflake-Based Electrodes for Quasi-Solid-State Asymmetric Supercapacitors

准静态过程 固态 材料科学 电极 超级电容器 准固态 工程物理 物理 热力学 电容 化学 物理化学 电解质 色素敏化染料
作者
M.P. Sharma,M. Pershaanaa,Anil Kumar Singh,K. Ramesh,S. Ramesh,Pritam Deb
出处
期刊:ACS applied nano materials [American Chemical Society]
卷期号:7 (20): 23592-23603 被引量:5
标识
DOI:10.1021/acsanm.4c03750
摘要

The spinel compounds are a class of intriguing electrode materials for redox-based supercapacitors owing to their high specific capacity and variable redox sites, but they are constrained by cyclic instability and an inadequate rate capability. The integration of suitable two-dimensional (2D) electrode nanomaterials with spinel compounds not only facilitates an effective charge transfer but also introduces more redox active sites, presenting significant electrochemical performance. Herein, a 0D/2D ZnNi2O4/WS2 (WZNO) hybrid nanostructure has been developed where WS2 nanoflakes (WNFS) act as a supportive matrix, allowing effective dispersion of ZnNi2O4 nanoparticles (ZNO) over its surface and thereby exposing numerous electrochemically active sites. The developed flexible electrode shows remarkable faradaic redox phenomena, exhibiting significant specific capacitance (184.8 F/g), impressive cyclic stability (38.5 ± 0.03%), and coulombic efficiency (94.7 ± 0.004%) up to 10,000 cycles. The ab initio calculations have demonstrated synergistic coupling between the constituents of the metallic ZnNi2O4/WS2 hybrid nanostructure, via interfacial charge transport, elucidating its significant electrochemical properties. The asymmetric supercapacitor exhibits superior specific capacitance (171.3 F/g), showcasing remarkable energy (61.6 W h/kg) and power density (1236.5 W/kg). Conversely, the quasi-solid-state supercapacitor demonstrates significant power (20.4 W h/kg) and energy density (921.2 W/kg) with impressive capacitance retention (97.2 ± 0.03%). The fabricated devices can illuminate different-colored LEDs, along with a fully operational clock and calculator, highlighting their significant potential as electrode materials in storage applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
momo应助曾无忧采纳,获得10
刚刚
追寻清完成签到,获得积分10
刚刚
刚刚
Lin应助怡然思萱采纳,获得10
刚刚
扬子发布了新的文献求助30
1秒前
summer完成签到,获得积分10
1秒前
1秒前
天涯完成签到,获得积分10
1秒前
研友_IEEE快到碗里来完成签到,获得积分10
1秒前
灯座发布了新的文献求助10
1秒前
面面完成签到,获得积分10
1秒前
1秒前
CAIWEN完成签到,获得积分10
2秒前
2秒前
CJZOU完成签到,获得积分10
2秒前
orixero应助小太阳采纳,获得10
3秒前
3秒前
Jonathan完成签到,获得积分10
3秒前
dddd完成签到,获得积分10
3秒前
hsn完成签到,获得积分10
3秒前
sansronds完成签到,获得积分10
4秒前
Lze发布了新的文献求助20
4秒前
天涯发布了新的文献求助10
5秒前
奋斗的苹果完成签到,获得积分10
5秒前
大花花完成签到,获得积分10
5秒前
脑洞疼应助呆萌幼晴采纳,获得10
5秒前
5秒前
刘辞忧完成签到 ,获得积分10
5秒前
SATone完成签到,获得积分10
6秒前
6秒前
呼呼完成签到,获得积分10
6秒前
6秒前
Coarrb完成签到,获得积分10
6秒前
ylf发布了新的文献求助10
7秒前
胡小溪完成签到,获得积分10
7秒前
温暖的冬天完成签到,获得积分10
7秒前
从容雅柏完成签到,获得积分10
7秒前
JamesPei应助Lihuining采纳,获得10
7秒前
zy关注了科研通微信公众号
7秒前
大盘菜应助灯座采纳,获得10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573997
求助须知:如何正确求助?哪些是违规求助? 4660326
关于积分的说明 14728933
捐赠科研通 4600192
什么是DOI,文献DOI怎么找? 2524706
邀请新用户注册赠送积分活动 1495014
关于科研通互助平台的介绍 1465017