ZnNi2O4/WS2 Nanoflake-Based Electrodes for Quasi-Solid-State Asymmetric Supercapacitors

准静态过程 固态 材料科学 电极 超级电容器 准固态 工程物理 物理 热力学 电容 化学 物理化学 电解质 色素敏化染料
作者
M.P. Sharma,M. Pershaanaa,Anil Kumar Singh,K. Ramesh,S. Ramesh,Pritam Deb
出处
期刊:ACS applied nano materials [American Chemical Society]
标识
DOI:10.1021/acsanm.4c03750
摘要

The spinel compounds are a class of intriguing electrode materials for redox-based supercapacitors owing to their high specific capacity and variable redox sites, but they are constrained by cyclic instability and an inadequate rate capability. The integration of suitable two-dimensional (2D) electrode nanomaterials with spinel compounds not only facilitates an effective charge transfer but also introduces more redox active sites, presenting significant electrochemical performance. Herein, a 0D/2D ZnNi2O4/WS2 (WZNO) hybrid nanostructure has been developed where WS2 nanoflakes (WNFS) act as a supportive matrix, allowing effective dispersion of ZnNi2O4 nanoparticles (ZNO) over its surface and thereby exposing numerous electrochemically active sites. The developed flexible electrode shows remarkable faradaic redox phenomena, exhibiting significant specific capacitance (184.8 F/g), impressive cyclic stability (38.5 ± 0.03%), and coulombic efficiency (94.7 ± 0.004%) up to 10,000 cycles. The ab initio calculations have demonstrated synergistic coupling between the constituents of the metallic ZnNi2O4/WS2 hybrid nanostructure, via interfacial charge transport, elucidating its significant electrochemical properties. The asymmetric supercapacitor exhibits superior specific capacitance (171.3 F/g), showcasing remarkable energy (61.6 W h/kg) and power density (1236.5 W/kg). Conversely, the quasi-solid-state supercapacitor demonstrates significant power (20.4 W h/kg) and energy density (921.2 W/kg) with impressive capacitance retention (97.2 ± 0.03%). The fabricated devices can illuminate different-colored LEDs, along with a fully operational clock and calculator, highlighting their significant potential as electrode materials in storage applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
贪玩的元彤完成签到,获得积分10
刚刚
SciGPT应助白玉汤顿首采纳,获得10
1秒前
Lucas应助科研通管家采纳,获得30
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
咖啡豆应助科研通管家采纳,获得20
3秒前
酷波er应助科研通管家采纳,获得10
3秒前
Ava应助科研通管家采纳,获得10
3秒前
田様应助科研通管家采纳,获得50
3秒前
酷波er应助科研通管家采纳,获得10
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
慕青应助科研通管家采纳,获得10
3秒前
JamesPei应助科研通管家采纳,获得10
3秒前
Jasper应助科研通管家采纳,获得10
3秒前
清脆难胜应助科研通管家采纳,获得10
3秒前
4秒前
柳子关注了科研通微信公众号
4秒前
柳子关注了科研通微信公众号
4秒前
4秒前
李健的粉丝团团长应助WQ采纳,获得10
5秒前
顺心的莫茗完成签到,获得积分10
5秒前
6秒前
7秒前
7秒前
7秒前
orixero应助hhhm采纳,获得10
8秒前
从容芮应助zhangxuhns采纳,获得10
8秒前
9秒前
李燕君发布了新的文献求助10
9秒前
9秒前
贪玩的元彤发布了新的文献求助200
10秒前
白玉汤顿首完成签到,获得积分10
10秒前
名丿发布了新的文献求助10
10秒前
啦啦啦发布了新的文献求助10
10秒前
12秒前
12秒前
13秒前
草木发布了新的文献求助10
13秒前
曾经阁发布了新的文献求助10
14秒前
小二郎应助白张一个脑袋采纳,获得10
14秒前
JamesPei应助鲤鱼奇遇采纳,获得10
16秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Case Research: The Case Writing Process 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3141401
求助须知:如何正确求助?哪些是违规求助? 2792423
关于积分的说明 7802495
捐赠科研通 2448598
什么是DOI,文献DOI怎么找? 1302633
科研通“疑难数据库(出版商)”最低求助积分说明 626650
版权声明 601237