微波食品加热
吸收(声学)
材料科学
多孔性
多孔介质
碳纤维
光电子学
纳米技术
复合材料
工程类
电信
复合数
作者
Wenqi Cui,Xi-ya Shan,Wei Cai,Xinghai Zhou,Yuanlin Yan,Min-Yu Li,Yongfang Qian,Yuan Gao,Lihua Lyu,Shangru Zhai,Hong-Zhu Liu,Zhonggang Wang
出处
期刊:Langmuir
[American Chemical Society]
日期:2024-10-09
标识
DOI:10.1021/acs.langmuir.4c02887
摘要
An ingenious microstructure of electromagnetic microwave absorption materials is crucial to achieve strong absorption and a broad bandwidth. Herein, one-dimensional (1D) carbon fibers with implantation of zero-dimensional (0D) ZIF-8-derived carbon frameworks and construction of a three-dimensional (3D) microcosmic multichannel porous structure are fabricated by electro-blown spinning, solvent-thermal reaction, and high-temperature pyrolysis techniques. The 1D carbon fiber skeleton with a multichannel structure provides a direct axial conductive pathway for charge transport, which plays an important role in dielectric loss. The 0D surface carbon frameworks offer plenty of heterogeneous interfaces to trigger intensive interfacial polarization loss and act as dihedral angles for microwave scattering. The 3D microcosmic multichannel pores can not only generate multiple reflections as much as possible to dissipate electromagnetic microwave energy but also supply huge interior cavities to improve impedance matching. Thanks to the synergistic effect of a strong electrically conductive pathway for enhancing the conductive loss, a plenteous heterogeneous interface for triggering intensive interfacial polarization loss, microcosmic multichannel pores for generating multiple reflections and improving impedance matching, and N and O atom doping for inducing dipole polarization, the optimal sample with an ingenious microstructure delivers an excellent absorption performance of a minimum reflection loss of -35.5 dB at a thickness of 5.0 mm and an effective absorption bandwidth of 6.72 GHz (10.96-17.68 GHz) at a thickness of 2.0 mm. Such a well-designed multichannel porous carbon fiber may pave the way for the exploitation of high-performance microwave absorbing materials.
科研通智能强力驱动
Strongly Powered by AbleSci AI