Exploration of microRNA biomarker panel as a predictor of evolution of pancreatitis to pancreatic ductal adenocarcinoma.

胰腺导管腺癌 医学 生物标志物 小RNA 胰腺炎 胰腺癌 内科学 腺癌 肿瘤科 癌症研究 病理 癌症 基因 生物 遗传学
作者
Mira Nuthakki
出处
期刊:Journal of Clinical Oncology [American Society of Clinical Oncology]
卷期号:42 (16_suppl): e16343-e16343
标识
DOI:10.1200/jco.2024.42.16_suppl.e16343
摘要

e16343 Background: PDAC (pancreatic ductal adenocarcinoma) is 3rd most common cause of cancer deaths, and is projected to become the 2nd leading cause of cancer death by 2030 even as it comprises only 3.2% of all cancer cases. The most important predictor of survival is resection of early stage cancer. Currently, screening for early detection of PDAC via annual MRI or endoscopic ultrasound (EUS) is recommended only in the 10% of total cases, that have hereditary/ genetic associations. PDAC risk is doubled even 5 years after acute pancreatitis and is 15-16 fold for chronic pancreatitis. Biomarkers such as CA19-9, peptide panels, tumor-associated autoantibodies and microRNAs have been studied for early diagnosis of PDAC. However, biomarkers that can predict risk of PDAC following pancreatitis have not been well studied. This study aims to identify, compare, and extract a differentially expressed microRNA (DEM) panel in serum, that could predict risk of progression to PDAC from pancreatitis. Methods: Two microarray Genomic Spatial Event (GSE) datasets containing pancreatitis (n = 75), PDAC (90), and control samples (164) were used to extract DEM (n = 22), common to both pancreatitis and PDAC. 8 smaller subgroups of DEM (for cost benefit) were derived from bioinformatics methods such as ROC/AUC of expression values, up and downregulated clustering, correlation analysis, miRNA interaction networks, target gene prediction tools, target gene interaction and functional enrichment analysis for all target genes and top modules, as well as decision tree/cross-validated random forest machine learning models. Results: The DEM main group (n = 22) and the smaller subgroups were trained on the original datasets, and were used to predict the risk of pancreatic cancer vs control in a validation set consisting of six other GSE datasets. The main 22miRNA panel had the highest accuracy (0.928), F1(0.976), precision and recall, followed by subgroup 6 (accuracy 0.910, F1 0.968) derived from the target hub genes with the highest interaction (hsa-miR-28-3p, 320b, 320c, 320d, 532-5p, and 423-5p). The associated main pathways were ubi-conjugation and ubiquitin pathway, mRNA splicing/processing/binding, and endocytosis. Conclusions: A new serum 22 microRNA biomarker panel predicting evolution of pancreatitis to pancreatic ductal adenocarcinoma, and it’s associated pathways, has been identified, that also performed very well in distinguishing pancreatic cancer (with or without pancreatitis risk factor) from control. A smaller subpanel of 6 microRNA may have a cost benefit. Further studies with larger samples, specifically differentiating PDAC vs all pancreatic cancer, and acute vs chronic pancreatitis among the samples are needed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
maplesirup完成签到,获得积分10
刚刚
2秒前
3秒前
丰知然应助YMM采纳,获得10
5秒前
感动大神完成签到,获得积分20
5秒前
ZME完成签到,获得积分10
5秒前
小趴菜发布了新的文献求助10
5秒前
小鸭子应助絮甯采纳,获得10
8秒前
ding应助忧伤的烨伟采纳,获得10
8秒前
科研蚂蚁完成签到,获得积分10
9秒前
大个应助比特币麻袋装采纳,获得10
10秒前
烂漫的汲完成签到,获得积分10
11秒前
13秒前
阿离完成签到,获得积分20
14秒前
爱静静应助Nara2021采纳,获得10
14秒前
慕青应助shenglongmax采纳,获得10
15秒前
包容丹云完成签到,获得积分10
15秒前
panda完成签到,获得积分10
16秒前
依依发布了新的文献求助10
18秒前
20秒前
清凉茶完成签到,获得积分10
20秒前
睡一天懒觉完成签到,获得积分10
20秒前
欧阳静芙完成签到,获得积分10
21秒前
23秒前
Kervaff完成签到,获得积分10
23秒前
wudi19887发布了新的文献求助10
23秒前
25秒前
量子完成签到,获得积分20
25秒前
研究新人发布了新的文献求助10
27秒前
27秒前
自然完成签到,获得积分10
27秒前
小王完成签到 ,获得积分10
27秒前
雪流星完成签到 ,获得积分10
28秒前
panda发布了新的文献求助10
29秒前
30秒前
一点点完成签到 ,获得积分10
31秒前
31秒前
萧水白应助nini采纳,获得10
31秒前
科研通AI2S应助缥缈傥采纳,获得10
32秒前
32秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3304346
求助须知:如何正确求助?哪些是违规求助? 2938329
关于积分的说明 8488322
捐赠科研通 2612813
什么是DOI,文献DOI怎么找? 1426885
科研通“疑难数据库(出版商)”最低求助积分说明 662879
邀请新用户注册赠送积分活动 647374