Exploration of microRNA biomarker panel as a predictor of evolution of pancreatitis to pancreatic ductal adenocarcinoma.

胰腺导管腺癌 医学 生物标志物 小RNA 胰腺炎 胰腺癌 内科学 腺癌 肿瘤科 癌症研究 病理 癌症 基因 生物 遗传学
作者
Mira Nuthakki
出处
期刊:Journal of Clinical Oncology [American Society of Clinical Oncology]
卷期号:42 (16_suppl): e16343-e16343
标识
DOI:10.1200/jco.2024.42.16_suppl.e16343
摘要

e16343 Background: PDAC (pancreatic ductal adenocarcinoma) is 3rd most common cause of cancer deaths, and is projected to become the 2nd leading cause of cancer death by 2030 even as it comprises only 3.2% of all cancer cases. The most important predictor of survival is resection of early stage cancer. Currently, screening for early detection of PDAC via annual MRI or endoscopic ultrasound (EUS) is recommended only in the 10% of total cases, that have hereditary/ genetic associations. PDAC risk is doubled even 5 years after acute pancreatitis and is 15-16 fold for chronic pancreatitis. Biomarkers such as CA19-9, peptide panels, tumor-associated autoantibodies and microRNAs have been studied for early diagnosis of PDAC. However, biomarkers that can predict risk of PDAC following pancreatitis have not been well studied. This study aims to identify, compare, and extract a differentially expressed microRNA (DEM) panel in serum, that could predict risk of progression to PDAC from pancreatitis. Methods: Two microarray Genomic Spatial Event (GSE) datasets containing pancreatitis (n = 75), PDAC (90), and control samples (164) were used to extract DEM (n = 22), common to both pancreatitis and PDAC. 8 smaller subgroups of DEM (for cost benefit) were derived from bioinformatics methods such as ROC/AUC of expression values, up and downregulated clustering, correlation analysis, miRNA interaction networks, target gene prediction tools, target gene interaction and functional enrichment analysis for all target genes and top modules, as well as decision tree/cross-validated random forest machine learning models. Results: The DEM main group (n = 22) and the smaller subgroups were trained on the original datasets, and were used to predict the risk of pancreatic cancer vs control in a validation set consisting of six other GSE datasets. The main 22miRNA panel had the highest accuracy (0.928), F1(0.976), precision and recall, followed by subgroup 6 (accuracy 0.910, F1 0.968) derived from the target hub genes with the highest interaction (hsa-miR-28-3p, 320b, 320c, 320d, 532-5p, and 423-5p). The associated main pathways were ubi-conjugation and ubiquitin pathway, mRNA splicing/processing/binding, and endocytosis. Conclusions: A new serum 22 microRNA biomarker panel predicting evolution of pancreatitis to pancreatic ductal adenocarcinoma, and it’s associated pathways, has been identified, that also performed very well in distinguishing pancreatic cancer (with or without pancreatitis risk factor) from control. A smaller subpanel of 6 microRNA may have a cost benefit. Further studies with larger samples, specifically differentiating PDAC vs all pancreatic cancer, and acute vs chronic pancreatitis among the samples are needed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李健应助陶醉觅夏采纳,获得10
1秒前
1秒前
独特凡松完成签到,获得积分10
1秒前
木笔朱瑾完成签到 ,获得积分10
2秒前
Rinohalt完成签到,获得积分10
2秒前
3秒前
孙梁子完成签到,获得积分10
3秒前
核桃花生奶兔完成签到 ,获得积分10
4秒前
请叫我风吹麦浪应助HJJHJH采纳,获得10
5秒前
6秒前
孙奕发布了新的文献求助10
6秒前
xiaotian_fan完成签到,获得积分10
6秒前
8秒前
8秒前
科研通AI2S应助laochen采纳,获得10
8秒前
盘尼西林发布了新的文献求助10
8秒前
迟大猫应助专心搞学术采纳,获得10
9秒前
11秒前
孙奕完成签到,获得积分10
12秒前
12秒前
俟天晴完成签到,获得积分10
12秒前
淡定问芙发布了新的文献求助30
13秒前
15秒前
Lewis完成签到,获得积分10
16秒前
orixero应助TranYan采纳,获得10
16秒前
猪猪hero发布了新的文献求助10
18秒前
19秒前
今后应助333采纳,获得10
20秒前
pu发布了新的文献求助10
21秒前
Akim应助梓榆采纳,获得10
22秒前
劼大大完成签到,获得积分10
22秒前
最优解完成签到 ,获得积分20
23秒前
23秒前
通~发布了新的文献求助10
23秒前
一段乐多完成签到,获得积分10
24秒前
24秒前
24秒前
给我找完成签到,获得积分10
25秒前
桐桐应助Yuki0616采纳,获得10
25秒前
小马甲应助鸣隐采纳,获得10
25秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794