Exploration of microRNA biomarker panel as a predictor of evolution of pancreatitis to pancreatic ductal adenocarcinoma.

胰腺导管腺癌 医学 生物标志物 小RNA 胰腺炎 胰腺癌 内科学 腺癌 肿瘤科 癌症研究 病理 癌症 基因 生物 遗传学
作者
Mira Nuthakki
出处
期刊:Journal of Clinical Oncology [Lippincott Williams & Wilkins]
卷期号:42 (16_suppl): e16343-e16343
标识
DOI:10.1200/jco.2024.42.16_suppl.e16343
摘要

e16343 Background: PDAC (pancreatic ductal adenocarcinoma) is 3rd most common cause of cancer deaths, and is projected to become the 2nd leading cause of cancer death by 2030 even as it comprises only 3.2% of all cancer cases. The most important predictor of survival is resection of early stage cancer. Currently, screening for early detection of PDAC via annual MRI or endoscopic ultrasound (EUS) is recommended only in the 10% of total cases, that have hereditary/ genetic associations. PDAC risk is doubled even 5 years after acute pancreatitis and is 15-16 fold for chronic pancreatitis. Biomarkers such as CA19-9, peptide panels, tumor-associated autoantibodies and microRNAs have been studied for early diagnosis of PDAC. However, biomarkers that can predict risk of PDAC following pancreatitis have not been well studied. This study aims to identify, compare, and extract a differentially expressed microRNA (DEM) panel in serum, that could predict risk of progression to PDAC from pancreatitis. Methods: Two microarray Genomic Spatial Event (GSE) datasets containing pancreatitis (n = 75), PDAC (90), and control samples (164) were used to extract DEM (n = 22), common to both pancreatitis and PDAC. 8 smaller subgroups of DEM (for cost benefit) were derived from bioinformatics methods such as ROC/AUC of expression values, up and downregulated clustering, correlation analysis, miRNA interaction networks, target gene prediction tools, target gene interaction and functional enrichment analysis for all target genes and top modules, as well as decision tree/cross-validated random forest machine learning models. Results: The DEM main group (n = 22) and the smaller subgroups were trained on the original datasets, and were used to predict the risk of pancreatic cancer vs control in a validation set consisting of six other GSE datasets. The main 22miRNA panel had the highest accuracy (0.928), F1(0.976), precision and recall, followed by subgroup 6 (accuracy 0.910, F1 0.968) derived from the target hub genes with the highest interaction (hsa-miR-28-3p, 320b, 320c, 320d, 532-5p, and 423-5p). The associated main pathways were ubi-conjugation and ubiquitin pathway, mRNA splicing/processing/binding, and endocytosis. Conclusions: A new serum 22 microRNA biomarker panel predicting evolution of pancreatitis to pancreatic ductal adenocarcinoma, and it’s associated pathways, has been identified, that also performed very well in distinguishing pancreatic cancer (with or without pancreatitis risk factor) from control. A smaller subpanel of 6 microRNA may have a cost benefit. Further studies with larger samples, specifically differentiating PDAC vs all pancreatic cancer, and acute vs chronic pancreatitis among the samples are needed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_VZG7GZ应助lina采纳,获得10
刚刚
刚刚
刚刚
刚刚
果果完成签到,获得积分10
刚刚
欣欣发布了新的文献求助10
1秒前
RJ发布了新的文献求助10
1秒前
1秒前
华大01完成签到,获得积分10
1秒前
蓝色斑马发布了新的文献求助10
2秒前
麻果应助小慧儿采纳,获得10
2秒前
2秒前
CAOHOU应助邱老黑采纳,获得10
2秒前
斯文傲芙完成签到,获得积分10
3秒前
飞云发布了新的文献求助10
3秒前
abcdv完成签到,获得积分10
3秒前
3秒前
量子星尘发布了新的文献求助10
4秒前
小咸鱼发布了新的文献求助10
4秒前
李小喵发布了新的文献求助10
4秒前
4秒前
FJ发布了新的文献求助10
5秒前
5秒前
6秒前
华大01发布了新的文献求助10
6秒前
史永桂发布了新的文献求助10
6秒前
斯文败类应助谭玲慧采纳,获得10
8秒前
魏1122完成签到,获得积分10
8秒前
xiaomi发布了新的文献求助10
9秒前
二宝发布了新的文献求助10
10秒前
马拉疯兔子完成签到 ,获得积分10
10秒前
10秒前
乔哥儿发布了新的文献求助10
11秒前
WUCHEN完成签到,获得积分10
11秒前
天天快乐应助康康星采纳,获得10
11秒前
11秒前
12秒前
12秒前
明理苑博发布了新的文献求助10
13秒前
完美世界应助超级的之柔采纳,获得10
13秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961496
求助须知:如何正确求助?哪些是违规求助? 3507837
关于积分的说明 11138394
捐赠科研通 3240311
什么是DOI,文献DOI怎么找? 1790903
邀请新用户注册赠送积分活动 872636
科研通“疑难数据库(出版商)”最低求助积分说明 803288