Identification of atrial fibrillation-related genes through transcriptome data analysis and Mendelian randomization

全基因组关联研究 孟德尔随机化 小桶 表达数量性状基因座 医学 人口 基因表达谱 转录组 生物信息学 微阵列分析技术 计算生物学 生物 遗传学 基因 单核苷酸多态性 基因表达 基因型 遗传变异 环境卫生
作者
Yujun Zhang,Qiufang Lian,Yanwu Nie,Wei Zhao
出处
期刊:Frontiers in Cardiovascular Medicine [Frontiers Media SA]
卷期号:11
标识
DOI:10.3389/fcvm.2024.1414974
摘要

Background Atrial fibrillation (AF) is a common persistent arrhythmia characterized by rapid and chaotic atrial electrical activity, potentially leading to severe complications such as thromboembolism, heart failure, and stroke, significantly affecting patient quality of life and safety. As the global population ages, the prevalence of AF is on the rise, placing considerable strains on individuals and healthcare systems. This study utilizes bioinformatics and Mendelian Randomization (MR) to analyze transcriptome data and genome-wide association study (GWAS) summary statistics, aiming to identify biomarkers causally associated with AF and explore their potential pathogenic pathways. Methods We obtained AF microarray datasets GSE41177 and GSE79768 from the Gene Expression Omnibus (GEO) database, merged them, and corrected for batch effects to pinpoint differentially expressed genes (DEGs). We gathered exposure data from expression quantitative trait loci (eQTL) and outcome data from AF GWAS through the IEU Open GWAS database. We employed inverse variance weighting (IVW), MR-Egger, weighted median, and weighted model approaches for MR analysis to assess exposure-outcome causality. IVW was the primary method, supplemented by other techniques. The robustness of our results was evaluated using Cochran's Q test, MR-Egger intercept, MR-PRESSO, and leave-one-out sensitivity analysis. A “Veen” diagram visualized the overlap of DEGs with significant eQTL genes from MR analysis, referred to as common genes (CGs). Additional analyses, including Gene Ontology (GO) enrichment, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, and immune cell infiltration studies, were conducted on these intersecting genes to reveal their roles in AF pathogenesis. Results The combined dataset revealed 355 differentially expressed genes (DEGs), with 228 showing significant upregulation and 127 downregulated. Mendelian randomization (MR) analysis identified that the autocrine motility factor receptor (AMFR) [IVW: OR = 0.977; 95% CI, 0.956–0.998; P = 0.030], leucine aminopeptidase 3 (LAP3) [IVW: OR = 0.967; 95% CI, 0.934–0.997; P = 0.048], Rab acceptor 1 (RABAC1) [IVW: OR = 0.928; 95% CI, 0.875–0.985; P = 0.015], and tryptase beta 2 (TPSB2) [IVW: OR = 0.971; 95% CI, 0.943–0.999; P = 0.049] are associated with a reduced risk of atrial fibrillation (AF). Conversely, GTPase-activating SH3 domain-binding protein 2 (G3BP2) [IVW: OR = 1.030; 95% CI, 1.004–1.056; P = 0.024], integrin subunit beta 2 (ITGB2) [IVW: OR = 1.050; 95% CI, 1.017–1.084; P = 0.003], glutaminyl-peptide cyclotransferase (QPCT) [IVW: OR = 1.080; 95% CI, 1.010–0.997; P = 1.154], and tripartite motif containing 22 (TRIM22) [IVW: OR = 1.048; 95% CI, 1.003–1.095; P = 0.035] are positively associated with AF risk. Sensitivity analyses indicated a lack of heterogeneity or horizontal pleiotropy ( P > 0.05), and leave-one-out analysis did not reveal any single nucleotide polymorphisms (SNPs) impacting the MR results significantly. GO and KEGG analyses showed that CG is involved in processes such as protein polyubiquitination, neutrophil degranulation, specific and tertiary granule formation, protein-macromolecule adaptor activity, molecular adaptor activity, and the SREBP signaling pathway, all significantly enriched. The analysis of immune cell infiltration demonstrated associations of CG with various immune cells, including plasma cells, CD8T cells, resting memory CD4T cells, regulatory T cells (Tregs), gamma delta T cells, activated NK cells, activated mast cells, and neutrophils. Conclusion By integrating bioinformatics and MR approaches, genes such as AMFR, G3BP2, ITGB2, LAP3, QPCT, RABAC1, TPSB2, and TRIM22 are identified as causally linked to AF, enhancing our understanding of its molecular foundations. This strategy may facilitate the development of more precise biomarkers and therapeutic targets for AF diagnosis and treatment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
可爱书翠完成签到,获得积分10
刚刚
1秒前
2秒前
2秒前
独特凡松发布了新的文献求助10
3秒前
linxgyu发布了新的文献求助30
3秒前
3秒前
3秒前
落雁沙发布了新的文献求助10
5秒前
5秒前
6秒前
6秒前
图南发布了新的文献求助10
7秒前
7秒前
fifteen发布了新的文献求助10
7秒前
8秒前
小蘑菇应助感动的又槐采纳,获得10
8秒前
俏皮猫咪发布了新的文献求助10
8秒前
univ完成签到,获得积分10
9秒前
9秒前
CodeCraft应助武理采纳,获得10
10秒前
orixero应助同城代打采纳,获得10
10秒前
10秒前
科研通AI2S应助hihi采纳,获得10
11秒前
11秒前
11秒前
JamesPei应助秋之月采纳,获得10
12秒前
酷炫思天完成签到,获得积分20
12秒前
13秒前
健忘数据线完成签到 ,获得积分10
13秒前
脑洞疼应助忧伤的哲瀚采纳,获得10
13秒前
李健应助稳重的静丹采纳,获得30
13秒前
十一完成签到,获得积分10
14秒前
打打应助研友_8DAv0L采纳,获得10
14秒前
15秒前
杭慕晴发布了新的文献求助10
16秒前
Ash发布了新的文献求助10
16秒前
linxgyu完成签到,获得积分10
17秒前
酷炫思天发布了新的文献求助10
17秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3160823
求助须知:如何正确求助?哪些是违规求助? 2812005
关于积分的说明 7894119
捐赠科研通 2470886
什么是DOI,文献DOI怎么找? 1315786
科研通“疑难数据库(出版商)”最低求助积分说明 631003
版权声明 602053